Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 7, 2010
JANO9 – The 9th International Conference on Numerical Analysis and Optimization
Page(s) 116 - 121
Published online 26 August 2010
  1. L. Brotcorne, S. Hanafi, R. Mansi. A dynamic programming algorithm for the bilevel knapsack problem. Operations Research Letters, 37 (2009), No. 3, 215–218. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Calamai, L. Vicente. Generating linear and linear-quadratic Bilevel programming problems. SIAM Journal on Scientific and Statistical Computing, 14 (1993), 770–782. [CrossRef] [Google Scholar]
  3. B. Colson, P. Marcotte, G. Savard. Bilevel programming, a survey. 4OR, 3 (2005), 87–107. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Dempe. Foundation of Bilevel programming. Kluwer academic publishers, 2002. [Google Scholar]
  5. S. Dempe, K. Richter. Bilevel programming with Knapsack constraints. Central European Newspaper of Operations Research, 8 (2000), 93–107. [Google Scholar]
  6. P. Hansen, B. Jaumard, G. Savard. New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13 (1992), 1194–1217. [CrossRef] [Google Scholar]
  7. H. Kellerer, U. Pferschy, D. Pisinger. Knapsack problems. Springer-Verlag, 2004. [Google Scholar]
  8. J.T. Moore, J.F. Bard. The mixed integer linear Bilevel programming problem. Operations Research, 38 (1990), 911–921. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.