Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 226 - 242
DOI https://doi.org/10.1051/mmnp/20116112
Published online 09 June 2010
  1. A. M. Zhabotinsky. Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics). Biofizika, 9 (1964), 306–11. [PubMed]
  2. S. K. Scott. Chemical Chaos. Oxford University Press, Oxford, 1993.
  3. G. Biosa, M. Masia, N. Marchettini, M. Rustici. A ternary nonequilibrium phase diagram for a closed unstirred Belousov–Zhabotinsky system. Chem. Phys., 308 (2005), No. 1–2, 7–12. [CrossRef]
  4. M. Masia, N. Marchettini, V. Zambrano, M. Rustici. Effect of temperature in a closed unstirred Belousovâ-Zhabotinsky system. Chem. Phys. Lett., 341 (2001), No. 3–4, 285–291. [CrossRef]
  5. M. Rustici, M. Branca, C. Caravati, E. Petretto, N. Marchettini. Transition scenarios during the evolution of the Belousov-Zhabotinsky reaction in an unstirred batch reactor. J. Phys. Chem., 103 (1999), No. 33, 6564–6570.
  6. F. Rossi, M. A. Budroni, N. Marchettini, L. Cutietta, M. Rustici, M. L. Turco Liveri. Chaotic dynamics in an unstirred ferroin catalyzed Belousov–Zhabotinsky reaction. Chem. Phys. Lett., 480 (2009), No. 4–6, 322–326. [CrossRef]
  7. M. C. Cross, P. C. Hohenemberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65 (1993), No. 3, 851–1124. [CrossRef]
  8. A. Abramian, S. Vakulenko, V. Volpert (Eds). Patterns and waves. AkademPrint, Saint Petersburg, 2003.
  9. Y. Wu, D. A. Vasquez, B. F. Edwards, J. W. Wilder. Convective chemical–wave propagation in the Belousov–Zhabotinsky reaction. Phys. Rev. E, 51 (1995), No. 2, 1119–1127. [CrossRef]
  10. J. W. Wilder, B. F. Edwards, D. A. Vasquez. Finite thermal diffusivity at the onset of convection in autocatalytic systems: Continuous fluid density. Phys. Rev. A, 45 (1992), No. 4, 2320–2327. [CrossRef] [PubMed]
  11. K. I. Agladze, V. I. Krinsky, A. M. Pertsov. Chaos in the non–stirred Belousov–Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature, 308 (1984), 834–835. [CrossRef]
  12. N. Marchettini, M. Rustici. Effect of medium viscosity in a closed unstirred Belousovâ-Zhabotinsky system. Chem. Phys. Lett., 317 (2000), No. 6, 647–651. [CrossRef]
  13. F. Rossi, F. Pulselli, E. Tiezzi, S. Bastianoni, M. Rustici. Effects of the electrolytes in a closed unstirred Belousov-Zhabotinsky medium. Chem. Phys., 313 (2005), 101–106. [CrossRef]
  14. M. L. Turco Liveri, R. Lombardo, M. Masia, G. Calvaruso, M. Rustici. Role of the Reactor Geometry in the Onset of Transient Chaos in an Unstirred Belousov-Zhabotinsky System. J. Phys. Chem. A, 107 (2003), No. 24, 4834–4837. [CrossRef]
  15. R. Kapral, K. Showalter. Chemical waves and patterns. Kluwer Academic Publisher, Dordrecht/Boston/London, 1995.
  16. K. A. Cliffe, S. J. Taverner, H. Wilke. Convective effects on a propagating reaction front. Phys. Fluids, 10 (1998), No. 3, 730–741. [CrossRef] [MathSciNet]
  17. R. J. Field, M. Burger. Oscillations and travelling waves in chemical systems. Wiley, New York, 1985.
  18. J. A. Pojman, I. Epstein. Convective effects on chemical waves. 1.: Mechanisms and stability criteria. J. Phys. Chem., 94 (1990), 4966–4972. [CrossRef]
  19. W. Jahnke, W. E. Skaggs, A. T. Winfree. Chemical vortex dynamics in the Belousov–Zhabotinsky reaction and in the two–variable Orgonator model. J. Phys. Chem., 93 (1989), No. 2, 740–749. [CrossRef]
  20. S. Newhouse, D. Ruelle, F. Takens. Occurrence of strange axiom A attractors near quasiperiodic flows on Tm (m = 3 or more). Commun. Math. Phys., 64 (1978), 35 [NASA ADS] [CrossRef]
  21. H. Kantz, T. Schreiber. Nonlinear time series analysis. Cambridge Univesity Press, Cambridge, 1997.
  22. The TISEAN software package is publicly available at http://www.mpipk-sdresden.mpg.de/∼TISEAN.
  23. M. A. Budroni, M. Masia, M. Rustici, N. Marchettini, V. Volpert. Bifurcations in spiral tip dynamics induced by natural convection in the Belousov–Zhabotinsky reaction. J. Chem. Phys., 130 (2009), No. 2, 024902-1. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.