Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 226 - 242
Published online 09 June 2010
  1. A. M. Zhabotinsky. Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics). Biofizika, 9 (1964), 306–11. [PubMed] [Google Scholar]
  2. S. K. Scott. Chemical Chaos. Oxford University Press, Oxford, 1993. [Google Scholar]
  3. G. Biosa, M. Masia, N. Marchettini, M. Rustici. A ternary nonequilibrium phase diagram for a closed unstirred Belousov–Zhabotinsky system. Chem. Phys., 308 (2005), No. 1–2, 7–12. [CrossRef] [Google Scholar]
  4. M. Masia, N. Marchettini, V. Zambrano, M. Rustici. Effect of temperature in a closed unstirred Belousovâ-Zhabotinsky system. Chem. Phys. Lett., 341 (2001), No. 3–4, 285–291. [CrossRef] [Google Scholar]
  5. M. Rustici, M. Branca, C. Caravati, E. Petretto, N. Marchettini. Transition scenarios during the evolution of the Belousov-Zhabotinsky reaction in an unstirred batch reactor. J. Phys. Chem., 103 (1999), No. 33, 6564–6570. [Google Scholar]
  6. F. Rossi, M. A. Budroni, N. Marchettini, L. Cutietta, M. Rustici, M. L. Turco Liveri. Chaotic dynamics in an unstirred ferroin catalyzed Belousov–Zhabotinsky reaction. Chem. Phys. Lett., 480 (2009), No. 4–6, 322–326. [CrossRef] [Google Scholar]
  7. M. C. Cross, P. C. Hohenemberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65 (1993), No. 3, 851–1124. [CrossRef] [Google Scholar]
  8. A. Abramian, S. Vakulenko, V. Volpert (Eds). Patterns and waves. AkademPrint, Saint Petersburg, 2003. [Google Scholar]
  9. Y. Wu, D. A. Vasquez, B. F. Edwards, J. W. Wilder. Convective chemical–wave propagation in the Belousov–Zhabotinsky reaction. Phys. Rev. E, 51 (1995), No. 2, 1119–1127. [CrossRef] [Google Scholar]
  10. J. W. Wilder, B. F. Edwards, D. A. Vasquez. Finite thermal diffusivity at the onset of convection in autocatalytic systems: Continuous fluid density. Phys. Rev. A, 45 (1992), No. 4, 2320–2327. [CrossRef] [PubMed] [Google Scholar]
  11. K. I. Agladze, V. I. Krinsky, A. M. Pertsov. Chaos in the non–stirred Belousov–Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature, 308 (1984), 834–835. [CrossRef] [Google Scholar]
  12. N. Marchettini, M. Rustici. Effect of medium viscosity in a closed unstirred Belousovâ-Zhabotinsky system. Chem. Phys. Lett., 317 (2000), No. 6, 647–651. [CrossRef] [Google Scholar]
  13. F. Rossi, F. Pulselli, E. Tiezzi, S. Bastianoni, M. Rustici. Effects of the electrolytes in a closed unstirred Belousov-Zhabotinsky medium. Chem. Phys., 313 (2005), 101–106. [CrossRef] [Google Scholar]
  14. M. L. Turco Liveri, R. Lombardo, M. Masia, G. Calvaruso, M. Rustici. Role of the Reactor Geometry in the Onset of Transient Chaos in an Unstirred Belousov-Zhabotinsky System. J. Phys. Chem. A, 107 (2003), No. 24, 4834–4837. [CrossRef] [Google Scholar]
  15. R. Kapral, K. Showalter. Chemical waves and patterns. Kluwer Academic Publisher, Dordrecht/Boston/London, 1995. [Google Scholar]
  16. K. A. Cliffe, S. J. Taverner, H. Wilke. Convective effects on a propagating reaction front. Phys. Fluids, 10 (1998), No. 3, 730–741. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. J. Field, M. Burger. Oscillations and travelling waves in chemical systems. Wiley, New York, 1985. [Google Scholar]
  18. J. A. Pojman, I. Epstein. Convective effects on chemical waves. 1.: Mechanisms and stability criteria. J. Phys. Chem., 94 (1990), 4966–4972. [CrossRef] [Google Scholar]
  19. W. Jahnke, W. E. Skaggs, A. T. Winfree. Chemical vortex dynamics in the Belousov–Zhabotinsky reaction and in the two–variable Orgonator model. J. Phys. Chem., 93 (1989), No. 2, 740–749. [CrossRef] [Google Scholar]
  20. S. Newhouse, D. Ruelle, F. Takens. Occurrence of strange axiom A attractors near quasiperiodic flows on Tm (m = 3 or more). Commun. Math. Phys., 64 (1978), 35 [Google Scholar]
  21. H. Kantz, T. Schreiber. Nonlinear time series analysis. Cambridge Univesity Press, Cambridge, 1997. [Google Scholar]
  22. The TISEAN software package is publicly available at∼TISEAN. [Google Scholar]
  23. M. A. Budroni, M. Masia, M. Rustici, N. Marchettini, V. Volpert. Bifurcations in spiral tip dynamics induced by natural convection in the Belousov–Zhabotinsky reaction. J. Chem. Phys., 130 (2009), No. 2, 024902-1. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.