Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 237 - 263
DOI https://doi.org/10.1051/mmnp/20116310
Published online 16 May 2011
  1. J. D. Anderson, Jr. Fundamentals of aerodynamics. McGraw-Hill, New York, 1991. [Google Scholar]
  2. R. K. Agarwal, D. W. Halt. A Compact high-order unstructured grids method for the solution of Euler equations. Int. J. Num.Meth. Fluids, 31 (1999), 121–147. [CrossRef] [Google Scholar]
  3. T. J. Barth. Numerical methods for gasdynamic systems on unstructured meshes. Lecture Notes in Comput. Sci. Engrg., 8 (1998), 195–284. [Google Scholar]
  4. T. Barth, P. Frederickson. Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA 90-0013, 1990. [Google Scholar]
  5. G. E. Barter, D. L. Darmofal. Shock capturing with high-order,PDE-based artificial viscosity. AIAA paper 2007-3823, 2007. [Google Scholar]
  6. F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay. A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows. in Proceedings of ECCOMAS CFD 2006, P. Wesseling, E. Onate and J. Periaux (Eds), 2006 [Google Scholar]
  7. F. Bassi, S. Rebay. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids, 40 (2002), No. 1, 197–207. [CrossRef] [Google Scholar]
  8. A. Burbeau, P. Sagaut, Ch.-H. Bruneau. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J.Comput.Phys., 169 (2001), 111–150. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons, 2003. [Google Scholar]
  10. E. Casoni, J. Peraire, A. Huerta. One-dimensional shock-capturing for high-order discontinuous Galerkin methods. Computational Methods in Applied Sciences, 14 (2009), 307–325. [Google Scholar]
  11. B. Cockburn. Discontinuous Galerkin methods for convection - dominated problems. Lecture Notes in Comput. Sci. Engrg., 9 (1999), 69–224. [Google Scholar]
  12. B. Cockburn, G. E. Karniadakis, C.-W. Shu. The development of discontinuous Galerkin methods. Lecture Notes in Comput. Sci. Engrg., 9 (2000), 3–50. [Google Scholar]
  13. B. Cockburn, C.-W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion system. SIAM. J. Numer. Anal., 35 (1998), 2440–2463. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Cockburn, C.-W. Shu. The Runge - Kutta discontinuous Galerkin method for conservation laws V. J. Comput. Phys., 141 (1998), 199–224. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. H. Cook, M. A. McDonald, M. C. P. Firmin. Aerofoil RAE 2822 – pressure distribution, and boundary layer and wake measurements. AGARD-AR-138. [Google Scholar]
  16. D. L. Darmofal, R. Haimes. Towards the next generation in CFD. AIAA 2005-0087, 2005. [Google Scholar]
  17. M. Delanaye, A. Patel, B. Leonard, Ch. Hirsch. Automatic unstructured hexahedral grid generation and flow solution. in Proceedings of ECCOMAS CFD-2001, Swansea, Wales, UK, 2001. [Google Scholar]
  18. V. Dolejší, M. Feistauer, C. Schwab. On some aspects of the discontinuous Galerkin finite element method for conservation laws. Mathematics and Computers in Simulation, 61 (2003), 333–346. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. M. Enayet, M. M. Gibson, A. M. K. P. Taylor, M. Yianneskis. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. Int J. Heat and Fluid Flow, 3 (1982), No. 4, 213–219. [CrossRef] [Google Scholar]
  20. B. Engquist, S. Osher. One-sided difference equations for nonlinear conservation laws. Math. Comp., 36 (1981), 321–352. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Hirsch. Numerical computation of internal and external flows. vol.2, John Wiley & Sons, 1990. [Google Scholar]
  22. H. Hoteit et al. New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. INRIA report No. 4491, INRIA Rennes, France, 2002. [Google Scholar]
  23. F. Q. Hu, M. Y. Hussaini, J. Manthey. Low-dissipation and -dispersion Runge-Kutta schemes for computational acoustics. NASA Technical Report, 1994. [Google Scholar]
  24. D. S. Kershaw, M. K. Prasad, M. J. Shaw, J. L. Milovich. 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method. Comput. Meth. Appl. Mech. Engrg., 158 (1998), 81–116. [CrossRef] [Google Scholar]
  25. L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys., 226 (2007), No. 1, 276–296. [CrossRef] [Google Scholar]
  26. L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J. E. Flaherty. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Num. Math., 48 (2004), 323–338. [CrossRef] [Google Scholar]
  27. A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov. Mathematical aspects of numerical solution of hyperbolic systems. Monographs and Surveys in Pure and Applied Mathematics, 188, Chapman and Hall/CRC, Boca Raton, Florida, 2001. [Google Scholar]
  28. E. M. Lee-Rausch, P. G. Buning, D. Mavriplis, J. H. Morrison, M. A. Park, S. M. Rivers, C. L. Rumsey. CFD sensitivity analysis of a Drag Prediction Workshop wing/body transport configuration. AIAA 2003-3400, 2003. [Google Scholar]
  29. R. J. LeVeque. Numerical methods for conservation laws. Birkhäuser Verlag, Basel, Switzerland, 1992. [Google Scholar]
  30. D. W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R. A. Wahls, S. Pirzadeh, M. J. Hemsh. Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop. J. Aircraft, 40 (2003), No. 5, 875–882. [CrossRef] [Google Scholar]
  31. R. B. Lowrier. Compact higher-order numerical methods for hyperbolic conservation laws. PhD thesis, The University of Michigan, 1996. [Google Scholar]
  32. H. Luo, J. D. Baum, R. Löhner. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys., 225 (2007), 686–713. [CrossRef] [MathSciNet] [Google Scholar]
  33. H. Luo, J. D. Baum, R. Löhner. A fast, p-multigrid discontinuous Galerkin method for compressible flows at all speeds. AIAA Journal, 46 (2008), No. 3, 635–652. [CrossRef] [Google Scholar]
  34. A. A. Martynov, S. Yu. Medvedev. A robust method of anisotropic grid generation. In:Grid generation: Theory and Applications, Computing Centre RAS, Moscow, (2002), 266-275. [Google Scholar]
  35. D. J. Mavriplis. Unstructured mesh discretizations and solvers for computational aerodynamics. AIAA 2007-3955, 2007. [Google Scholar]
  36. C. R. Nastase, D. J. Mavriplis. Discontinuous Galerkin methods using an hp-multigrid solver for inviscid compressible flows on three-dimensional unstructured meshes. AIAA-Paper 2006-107, 2006. [Google Scholar]
  37. P.-O. Persson, J. Peraire. Sub-cell shock capturing for discontinuous Galerkin method. AIAA paper 2006-112, 2006. [Google Scholar]
  38. N. B. Petrovskaya, A. V. Wolkov. The issues of solution approximation in higher order schemes on distorted grids. Int. J. Comput. Methods, 4 (2007), No. 2, 367–382. [CrossRef] [MathSciNet] [Google Scholar]
  39. N. B. Petrovskaya. Quadratic least-squares solution reconstruction in a boundary layer region. Commun. Numer. Meth. Engng., 26 (2010), No. 12, 1721–1735. [Google Scholar]
  40. N. B. Petrovskaya. Discontinuous weighted least-squares approximation on irregular grids. CMES: Computer Modeling in Engineering & Sciences, 32 (2008), No. 2, 69–84. [Google Scholar]
  41. N. B. Petrovskaya, A. V. Wolkov, S. V. Lyapunov. Modification of basis functions in high order discontinuous Galerkin schemes for advection equation. Appl. Math. Mod., 32 (2008), No. 5, 826–835. [CrossRef] [Google Scholar]
  42. J. Qiu, C.-W. Shu. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys., 193 (2003), 115–135. [CrossRef] [Google Scholar]
  43. C.-W. Shu, S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77 (1988), 439-471. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  44. P. R. Spalart, S. R. Allmaras. A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale, 1 (1994), 5–21. [Google Scholar]
  45. Y. Sun, Z. J. Wang. Evaluation of discontinuous Galerkin and spectral volume methods for conservation laws on unstructured grids, AIAA 2003-0253, 2003. [Google Scholar]
  46. C. K. W. Tam, J. C. Webb. Dispersion-relation-preserving schemes for computational acoustics, J. Comput. Phys., 107 (1993), 262–281. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. J. W. van der Vegt, H. van der Ven. Space – time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. 33rd Computational Fluid Dynamics Course ‘Novel methods for solving convection dominated systems’, the von Karman Institute, Rhode-St-Genese, Belgium, March 24–28, 2003. [Google Scholar]
  48. V. Venkatakrishnan, S. Allmaras, D. Kamenetskii, F. Johnson. Higher order schemes for the compressible Navier-Stokes equations. AIAA 2003-3987, 2003. [Google Scholar]
  49. A. V. Wolkov. Design and implementation of higher order schemes for 3-D computational aerodynamics problems. Habilitation Thesis, Central Aerohydrodynamic Institute (TsAGI), Moscow, 2010. [Google Scholar]
  50. A. V. Wolkov. Application of the multigrid approach for solving the 3D Navier-Stokes equations on hexahedral grids using the discontinuous Galerkin method. J. Comput. Mathem. and Mathem. Phys., 50 (2010), No. 3, 495–508. [CrossRef] [Google Scholar]
  51. A. Wolkov, Ch. Hirsch, B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids for the 3D Euler and Navier-Stokes equations. AIAA 2007-4078, 2007. [Google Scholar]
  52. A. Wolkov, Ch. Hirsch, B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids. AIAA 2009-177, 2009. [Google Scholar]
  53. A. V. Wolkov, N. B. Petrovskaya. Higher order discontinuous Galerkin method for acoustic pulse problem. Comput. Phys. Commun., 181 (2010), 1186–1194. [CrossRef] [Google Scholar]
  54. J. Zhu, J. Qiu, C.-W. Shu , M. Dumbser. Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. J. Comput. Phys., 227 (2008), 4330–4353. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.