Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 263 - 280
DOI https://doi.org/10.1051/mmnp/20116510
Published online 10 August 2011
  1. J. W. Barrett, W. B. Liu. Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994), no. 4, 437–456. [CrossRef] [MathSciNet]
  2. D. I. Benn, C. R. Warren, R. H. Mottram. Calving processes and the dynamics of calving glaciers. Earth-Science Reviews, 82 (2007), no. 3-4, 143–179. [CrossRef]
  3. A. Bonito, M. Picasso, M. Laso. Numerical simulation of 3D viscoelastic flows with free surfaces. J. Comput. Phys., 215 (2006), no. 2, 691–716. [CrossRef] [MathSciNet]
  4. A. Caboussat, G. Jouvet, M. Picasso, J. Rappaz. Numerical algorithms for free surface flow. Book chapter in CRC volume ’Computational Fluid Dynamics’ (2011).
  5. A. Caboussat, M. Picasso, J. Rappaz. Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas. J. Comput. Phys., 203 (2005), no. 2, 626–649. [CrossRef] [MathSciNet]
  6. D. Farinotti, M. Huss, A. Bauder, M. Funk, M. Truffer, A method to estimate ice volume and ice thickness distribution of alpine glaciers. J. Glaciol., 55 (2009), no. 191, 422–430. [CrossRef]
  7. L. P. Franca, S. L. Frey. Stabilized finite element methods. II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 99 (1992), no. 2-3, 209–233. [CrossRef] [MathSciNet]
  8. The Swiss Glaciers, 1880–2006/07. Tech. Report 1-126, Yearbooks of the Cryospheric Commission of the Swiss Academy of Sciences (SCNAT), 1881–2009, Published since 1964 by Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zürich.
  9. J.W. Glen. The flow law of ice.. IUGG/IAHS Symposium of Chamonix IAHS Publication, 47 (1958), 171183.
  10. R. Greve, H. Blatter. Dynamics of ice sheets and glaciers. Springer Verlag, 2009.
  11. G.H. Gudmundsson. A three-dimensional numerical model of the confluence area of unteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 45 (1999), no. 150, 219–230. [CrossRef]
  12. M. Huss, A. Bauder, M. Funk, R. Hock. Determination of the seasonal mass balance of four alpine glaciers since 1865. Journal of Geophysical Research, 113 (2008).
  13. K. Hutter. Theoretical glaciology. Reidel, 1983.
  14. G. Jouvet. Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers. Ph.D. thesis, EPF Lausanne, 2010.
  15. G. Jouvet, M. Huss, H. Blatter, M. Picasso, J. Rappaz. Numerical simulation of rhonegletscher from 1874 to 2100. J. Comp. Phys., 228 (2009), 6426–6439. [CrossRef]
  16. G. Jouvet, M. Picasso, J. Rappaz, H. Blatter. A new algorithm to simulate the dynamics of a glacier: theory and applications. J. Glaciol., 54 (2008), no. 188, 801–811. [CrossRef]
  17. J. Lemaitre. A course on damage mechanics. Springer, 1992.
  18. V. Maronnier, M. Picasso, J. Rappaz. Numerical simulation of three-dimensional free surface flows. Internat. J. Numer. Methods Fluids, 42 (2003), no. 7, 697–716. [CrossRef] [MathSciNet]
  19. A. Pralong. On the instability of hanging glaciers. Ph.D. thesis, ETH Zurich, 2005.
  20. A. Pralong, M. Funk, A level-set method for modeling the evolution of glacier geometry. J. Glaciol., 50 (2004), no. 171, 485–491. [CrossRef]
  21. A. Pralong, M. Funk. Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. Res., 110 (2005).
  22. A. Pralong, M. Funk, M. Lüthi. A description of crevasse formation using continuum damage mechanics. Ann. Glaciol., 37 (2003), no. 1, 77–82. [CrossRef]
  23. R. Scardovelli, S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech., 31 (1999), no. 7, 567–603. [CrossRef]
  24. A. Zryd. Les glaciers en mouvement. Presses polytechniques et universitaires romandes, 2008.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.