Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 5, 2011
Complex Fluids
Page(s) 333 - 349
Published online 10 August 2011
  1. G. C. Cheng, H. M. Loree, R. D. Kamm, M. C. Fishbein, R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circ. Res., 4 (1993), No. 87, 1179–1187. [Google Scholar]
  2. L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics. Heidelberg, DE: Springer, 2009. [Google Scholar]
  3. T. C. Gasser, G. A. Holzapfel. A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comp. Mech., 29 (2002), No. 4–5, 340–360. [CrossRef] [Google Scholar]
  4. G. A. Holzapfel, T. C. Gasser, R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity, 61 (2000), No. 1, 1–48. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. A. Holzapfel, M. Stadler, C. A. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng., 30 (2002), No. 6, 753–767. [CrossRef] [PubMed] [Google Scholar]
  6. N. El Khatib, S. Génieys, V. Volpert. Atherosclerosis initiation modeled as an inflammatory process. Math. Model. Nat. Phen., 2 (2007), No. 2, 126–141. [CrossRef] [EDP Sciences] [Google Scholar]
  7. N. El Khatib, S. Génieys, A. M. Zine, V. Volpert. Non-Newtonian effects in a fluid-structure interaction model for atherosclerosis. J. Tech. Phys., 1 (2009), No. 50, 55–64. [Google Scholar]
  8. H. M. Loree, R. D. Kamm, R. G. Stringfellow, R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res., 4 (1992), No. 71, 850–858. [Google Scholar]
  9. Y. Mori, C. S. Peskin. A universal programmable fiber architecture for the representation of a general incompressible linearly elastic material as a fiber-reinforced fluid. Adv. Appl. Math., 43 (2009), No. 1, 75–100. [CrossRef] [Google Scholar]
  10. T. J. Pedley, X. Y. Luo. Modelling flow and oscillations in collapsible tubes. Theor. Comp. Dluid Dyn., 10 (1998), No. 1–4, 277–294. [CrossRef] [Google Scholar]
  11. M. Rosar, C. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J. Math., 7 (2001), 281–302. [MathSciNet] [Google Scholar]
  12. S. S. Simakov, A. S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances. Mat. Mod. Comp. Sim., 1 (2009), No. 283–295. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. A. Taylor, M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Ann. Rev. Fluid Mech., (2004), No. 36, 197–231. [CrossRef] [Google Scholar]
  14. C. Tu, C. Peskin. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Scientific and Statistical Computing, 6 (1992), No. 13, 1361–1376. [Google Scholar]
  15. F. N. Van de Vosse. Mathematical modelling of the cardiovascular system. J. Eng. Math., (2003), No. 47, 175–183. [CrossRef] [Google Scholar]
  16. Y. V. Vassilevski, S. S. Simakov, S. A. Kapranov. A multi-model approach to intravenous filter optimization. Int. J. Num. Meth. Biomed. Eng., 26 (2010), No. 7, 915–925. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.