Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 7, 2011
Mathematical modeling in biomedical applications
Page(s) 82 - 99
DOI https://doi.org/10.1051/mmnp:20116707
Published online 15 June 2011
  1. G. Cheng, H. Loree, R. Kamm, M. Fishbein, R. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation, 87 (1993), 1179–1187. [PubMed]
  2. L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics, Vol. 1. Heidelberg, Springer, 2009.
  3. A. Green, J. Adkins. Large Elastic Deformation. Clarendon Press, Oxford, 1970.
  4. G. Holzapfel, R. Ogden (Eds.). Mechanics of Biological Tissue, Vol. XII. 2006.
  5. G. Holzapfel, R. Ogden. Constitutive modelling of arteries. Proc. R. Soc. A, 466 (2010), No. 2118, 1551–1597. [CrossRef]
  6. J. Humphrey. Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, (2003), 3–46. [CrossRef]
  7. V. Koshelev, S. Mukhin, T. Sokolova, N. Sosnin, A. Favorski. Mathematical modelling of cardio-vascular hemodynamics with account of neuroregulation. Matem. Mod., 19 (2007), No. 3, 15–28 (in Russian).
  8. R. Lee, A. Grodzinsky, E. Frank, R. Kamm, F. Schoen. Structuredependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation, 83 (1991), 1764–1770. [PubMed]
  9. J. Ohayon et al. Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: Potential impact for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 293 (2007), 1987–1996. [CrossRef]
  10. T.J. Pedley, X.Y. Luo. Modelling flow and oscillations in collapsible tubes. Theor. Comp. Fluid Dyn., 10 (1998), No. 1–4, f–294.
  11. A. Quarteroni, L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of numerical analysis, Vol.XII, Amsterdam, Elsevier, 2004, 3–127.
  12. W. Riley, R. Barnes, et al. Ultrasonic measurement of the elastic modulus of the common carotid. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke, 23 (1992), 952–956. [CrossRef] [PubMed]
  13. M. Rosar, C. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J. Math., 7 (2001), 281–302. [MathSciNet]
  14. S.S. Simakov, A.S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances. Mat. Mod. Comp. Sim., 1 (2009), 283–295. [CrossRef] [MathSciNet]
  15. C. Tu, C. Peskin. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Sci. Stat. Comp., 6 (1992), No. 13, 1361–1376.
  16. Y.V. Vassilevski, S.S. Simakov, S.A. Kapranov. A multi-model approach to intravenous filter optimization. Int. J. Num. Meth. Biomed. Engrg., 26 (2010), No. 7, 915–925.
  17. Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova. Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall. Math. Model. Nat. Phen. (in press), 2011.
  18. R. Vito, S. Dixon. Blood vessel constitutive models, 1995-2002. Annu. Rev. Biomed. Engrg., 5 (2003), 413–439. [CrossRef]
  19. R. Wulandana. A nonlinear and inelastic constitutive equation for human cerebral arterial and aneurysm walls. Dissertation, University of Pittsburgh, Pittsburgh, 2003.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.