Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 1 - 5
Published online 09 July 2012
  1. M. Pollack, R. Fair, A. Shenderov. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett., 77 (2000), 1725–1726. [CrossRef]
  2. R. Hayes, B. Feenstra. Video-speed electronic paper based on electrowetting. Nature, 425 (2003), 383–385. [CrossRef] [PubMed]
  3. Fr. Mugele, J.-Ch. Baret. Electrowetting : from basics to applications. J. Phys. : Condens. Matter, 17 (2005), R705-R774. [CrossRef]
  4. T. Krupenkin, J. Taylor, T. Schneider, S. Yang, From Rolling Ball to Complete Wetting : The Dynamic Tuning of Liquids on Nanostructured Surfaces. Langmuir, 20 (2004), 3824–3827. [CrossRef] [PubMed]
  5. N.-Tr. Nguyen, G. Zhu, Y.-Ch. Chua, V.-Ng. Phan, S.-H. Tan. Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet. Langmuir, 26 (2010), 12553–12559. [CrossRef] [PubMed]
  6. Q. Zhou, W. Ristenpart, P. Stroeve. Magnetically Induced Decrease in Droplet Contact Angle on Nanostructured Surfaces. Langmuir 27, (2011), 11747–11751. [CrossRef] [PubMed]
  7. L. Liggieri, A. Sanfeld, A. Steinchenbad. Effects of magnetic and electric fields on surface tension of liquids. Physica A, 206 (1994), 299–331. [CrossRef]
  8. A. Banpurkar, K. Nichols, Fr. Mugele. Electrowetting-Based Microdrop Tensiometer. Langmuir, 24 (2008), 10549–10551. [CrossRef] [PubMed]
  9. B. Shapiro, H. Moon, R. Garrell, CJ. Kim. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J. Applied Physics, 93 (2003), 5794–5811 [CrossRef]
  10. P. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and Wetting Phenomena. Springer, Berlin, 2003.
  11. A. Cassie, S. Baxter. Wettablity of porous surfaces. Trans. Faraday Soc., 40 (1944), 546–551. [CrossRef]
  12. A. Cassie. Contact angles. Discuss. Faraday Soc., 3 (1948), 11–16. [CrossRef]
  13. R. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28 (1936), 988–994. [CrossRef]
  14. A. Marmur. Wetting on hydrophobic rough surfaces : to be heterogeneous or not to be? Langmuir, 19 (2003), 8343–8348. [CrossRef]
  15. M. Nosonovsky. On the Range of Applicability of the Wenzel and Cassie Equations. Langmuir, 23 (2007), 9919–9920. [CrossRef] [PubMed]
  16. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir, 16 (2000), 5754. [CrossRef]
  17. S. Larsen, R. Taboryski. A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. Langmuir, 25 (2009), 1282–1284. [CrossRef] [PubMed]
  18. B. Bhushan, M. Nosonovsky. The rose petal effect and the modes of superhydrophobicity. Philosophical Trans. Royal Soc. A, 368 (2010), 4713–4728. [CrossRef]
  19. T.-S. Wong, Ch.-M. Ho. Dependence of Macroscopic Wetting on Nanoscopic Surface Textures. Langmuir, 25 (2009), 12851–12854. [CrossRef] [PubMed]
  20. D. Aronov, M. Molotskii, G. Rosenman. Electron-induced wettability modification. Physical Review B 76 (2007), 035437. [CrossRef]
  21. I. Gelfand, S. Fomin. Calculus of Variations. Dover, New York, 2000.
  22. A. Marmur. Line tension effect on contact angles : Axisymmetric and cylindrical systems with rough or heterogeneous solid surfaces. Colloids Surf. A, 136 (1998), 81–88. [CrossRef]
  23. V. Starov, M. Velarde. Surface forces and wetting phenomena. J. Phys. Condens. Matter., 21 (2009), 464121. [CrossRef] [PubMed]
  24. E. Bormashenko. Young, Boruvka-Neumann, Wenzel and Cassie-Baxter equations as the transversality conditions for the variational problem of wetting. Colloids and Surfaces A, 345 (2009), 163–165. [CrossRef]
  25. E. Bormashenko. Wetting of Flat and Rough Curved Surfaces. J. Phys. Chem. C, 113 (2009), 17275–17277. [CrossRef]
  26. E. Bormashenko. A Variational Approach to Wetting of Composite Surfaces : Is Wetting of Composite Surfaces a One-Dimensional or Two-Dimensional Phenomenon? Langmuir, 25 (2009), 10451–10454. [CrossRef] [PubMed]
  27. E. Bormashenko. General equation describing wetting of rough surfaces. Journal of Colloid and Interface Science, 360 (2011), 317–319. [CrossRef] [PubMed]
  28. A. Amirfazli, A. Neumann. Status of three-phase line tension. Advances in Colloid and Interface Science, 110 (2004), 121–141. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.