Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 1 - 5
DOI https://doi.org/10.1051/mmnp/20127401
Published online 09 July 2012
  1. M. Pollack, R. Fair, A. Shenderov. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett., 77 (2000), 1725–1726. [CrossRef] [Google Scholar]
  2. R. Hayes, B. Feenstra. Video-speed electronic paper based on electrowetting. Nature, 425 (2003), 383–385. [CrossRef] [PubMed] [Google Scholar]
  3. Fr. Mugele, J.-Ch. Baret. Electrowetting : from basics to applications. J. Phys. : Condens. Matter, 17 (2005), R705-R774. [Google Scholar]
  4. T. Krupenkin, J. Taylor, T. Schneider, S. Yang, From Rolling Ball to Complete Wetting : The Dynamic Tuning of Liquids on Nanostructured Surfaces. Langmuir, 20 (2004), 3824–3827. [CrossRef] [PubMed] [Google Scholar]
  5. N.-Tr. Nguyen, G. Zhu, Y.-Ch. Chua, V.-Ng. Phan, S.-H. Tan. Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet. Langmuir, 26 (2010), 12553–12559. [CrossRef] [PubMed] [Google Scholar]
  6. Q. Zhou, W. Ristenpart, P. Stroeve. Magnetically Induced Decrease in Droplet Contact Angle on Nanostructured Surfaces. Langmuir 27, (2011), 11747–11751. [CrossRef] [PubMed] [Google Scholar]
  7. L. Liggieri, A. Sanfeld, A. Steinchenbad. Effects of magnetic and electric fields on surface tension of liquids. Physica A, 206 (1994), 299–331. [CrossRef] [Google Scholar]
  8. A. Banpurkar, K. Nichols, Fr. Mugele. Electrowetting-Based Microdrop Tensiometer. Langmuir, 24 (2008), 10549–10551. [CrossRef] [PubMed] [Google Scholar]
  9. B. Shapiro, H. Moon, R. Garrell, CJ. Kim. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J. Applied Physics, 93 (2003), 5794–5811 [Google Scholar]
  10. P. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and Wetting Phenomena. Springer, Berlin, 2003. [Google Scholar]
  11. A. Cassie, S. Baxter. Wettablity of porous surfaces. Trans. Faraday Soc., 40 (1944), 546–551. [CrossRef] [Google Scholar]
  12. A. Cassie. Contact angles. Discuss. Faraday Soc., 3 (1948), 11–16. [Google Scholar]
  13. R. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28 (1936), 988–994. [Google Scholar]
  14. A. Marmur. Wetting on hydrophobic rough surfaces : to be heterogeneous or not to be? Langmuir, 19 (2003), 8343–8348. [CrossRef] [Google Scholar]
  15. M. Nosonovsky. On the Range of Applicability of the Wenzel and Cassie Equations. Langmuir, 23 (2007), 9919–9920. [CrossRef] [PubMed] [Google Scholar]
  16. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir, 16 (2000), 5754. [CrossRef] [Google Scholar]
  17. S. Larsen, R. Taboryski. A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. Langmuir, 25 (2009), 1282–1284. [CrossRef] [PubMed] [Google Scholar]
  18. B. Bhushan, M. Nosonovsky. The rose petal effect and the modes of superhydrophobicity. Philosophical Trans. Royal Soc. A, 368 (2010), 4713–4728. [Google Scholar]
  19. T.-S. Wong, Ch.-M. Ho. Dependence of Macroscopic Wetting on Nanoscopic Surface Textures. Langmuir, 25 (2009), 12851–12854. [CrossRef] [PubMed] [Google Scholar]
  20. D. Aronov, M. Molotskii, G. Rosenman. Electron-induced wettability modification. Physical Review B 76 (2007), 035437. [CrossRef] [Google Scholar]
  21. I. Gelfand, S. Fomin. Calculus of Variations. Dover, New York, 2000. [Google Scholar]
  22. A. Marmur. Line tension effect on contact angles : Axisymmetric and cylindrical systems with rough or heterogeneous solid surfaces. Colloids Surf. A, 136 (1998), 81–88. [CrossRef] [Google Scholar]
  23. V. Starov, M. Velarde. Surface forces and wetting phenomena. J. Phys. Condens. Matter., 21 (2009), 464121. [Google Scholar]
  24. E. Bormashenko. Young, Boruvka-Neumann, Wenzel and Cassie-Baxter equations as the transversality conditions for the variational problem of wetting. Colloids and Surfaces A, 345 (2009), 163–165. [CrossRef] [Google Scholar]
  25. E. Bormashenko. Wetting of Flat and Rough Curved Surfaces. J. Phys. Chem. C, 113 (2009), 17275–17277. [CrossRef] [Google Scholar]
  26. E. Bormashenko. A Variational Approach to Wetting of Composite Surfaces : Is Wetting of Composite Surfaces a One-Dimensional or Two-Dimensional Phenomenon? Langmuir, 25 (2009), 10451–10454. [CrossRef] [PubMed] [Google Scholar]
  27. E. Bormashenko. General equation describing wetting of rough surfaces. Journal of Colloid and Interface Science, 360 (2011), 317–319. [CrossRef] [PubMed] [Google Scholar]
  28. A. Amirfazli, A. Neumann. Status of three-phase line tension. Advances in Colloid and Interface Science, 110 (2004), 121–141. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.