Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 99 - 145
DOI https://doi.org/10.1051/mmnp/20127408
Published online 09 July 2012
  1. A. Oron, S. H. Davis, S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931–980. [CrossRef] [Google Scholar]
  2. S. Kalliadasis, U. Thiele (Ed) Thin Films of Soft Matter. Springer-Wien, New York, 2007. [Google Scholar]
  3. R. V. Craster, O. K. Matar. Dynamics and stability of thin liquid films. Rev. Mod. Phys., 81 (2009), 1131–1198. [CrossRef] [Google Scholar]
  4. P. L. Kapitza. Wave flow of thin layers of viscous fluid : I. Free flow. Zh. Eksp. Tear. Fiz., 18 (1948), 3–18. [Google Scholar]
  5. P. L. Kapitza. Wave flow of thin layers of a viscous fluid : II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Eksp. Teor. Fiz., 18 (1948), 19–28. [Google Scholar]
  6. P. L. Kapitza, S. P. Kapitza. Wave flow of thin layers of a viscous fluid : III. Experimental study of undulatory flow conditions. Zh. Eksp. Teor. Fiz., 19 (1949), 105–120. [Google Scholar]
  7. H.-C. Chang. Wave evolution on a falling film. Ann. Rev. Fluid Mech., 26 (1994), 103–136. [CrossRef] [Google Scholar]
  8. H.-C. Chang, E. A. Demekhin. Complex Wave Dynamics on Thin Films. Elsevier, 2002. [Google Scholar]
  9. Z. Dagan, L. M. Pismen. Marangoni waves induced by a multistable chemical reaction on thin liquid films. J. Colloid Interface Sci., 99 (1984), 215–225. [CrossRef] [Google Scholar]
  10. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Interfacial hydrodynamic waves driven by chemical reactions. J. Eng. Math., 59 (2007), 207–220. [CrossRef] [Google Scholar]
  11. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Dynamics of a horizontal thin liquid film in the presence of reactive surfactants. Phys. Fluids, 19 (2007), 112102. [CrossRef] [Google Scholar]
  12. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Interfacial instabilities driven by chemical reactions. Eur. Phys. J. Special Topics, 166 (2009), 121–125. [CrossRef] [EDP Sciences] [Google Scholar]
  13. A. Y. Rednikov, Y. S. Ryazantsev, M. G. Velarde. Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids, 6 (1994), 451–468. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. M. Pismen. Chemocapillary instabilities of a contact line. Phys. Rev. E, 81 (2010), 026307. [CrossRef] [Google Scholar]
  15. E. R. Gilliland, R. F. Baddour, P. L. T. Brian. Gas Absorption Accompanied by a Liquid-phase Chemical Reaction. Am. Inst. Chem. Eng. J., 4 (1958), 223. [CrossRef] [Google Scholar]
  16. P. M. J. Trevelyan, S. Kalliadasis. Dynamics of a reactive falling film at large Péclet numbers. I. Long-wave approximation. Phys. Fluids, 16 (2004), 3191-3208. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. M. J. Trevelyan, S. Kalliadasis. Dynamics of a reactive falling film at large Péclet numbers. II. Nonlinear waves far from criticality : Integral-boundary-layer approximation. Phys. Fluids, 16 (2004), 3209-3226. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. A. Nepomnyashchy, M. G. Velarde, P. Colinet. Interfacial Phenomena and Convection. Chapman & Hall, London, 2002. [Google Scholar]
  19. R. C. Weast, M. J. Astle. Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL, 1979. [Google Scholar]
  20. C. E. Wylock, P. Colinet, T. Cartage, B. Haut. Coupling between mass transfer and chemical reactions during the absorption of CO2 in a NaHCO3-Na2HCO3 brine : Experimental and theoretical study. Int. J. Chem. React. Engng., 6 (2008), A4. [Google Scholar]
  21. S. Kalliadasis, E. A. Demekhin, C. Ruyer-Quil, M. G. Velarde. Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech., 492 (2003), 303–338. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Trevelyan, S. Kalliadasis. Wave dynamics on a thin-liquid film falling down a heated wall. J. Eng. Math., 50 (2004), 177–208. [CrossRef] [Google Scholar]
  23. C. Ruyer-Quil, B. Scheid, S. Kalliadasis, M. G. Velarde, R. Kh. Zeytounian. Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech., 538 (2005), 199–222. [CrossRef] [Google Scholar]
  24. P. M. J. Trevelyan, B. Scheid, C. Ruyer-Quil, S. Kalliadasis. Heated falling films. J. Fluid Mech., 592 (2007), 295–334. [Google Scholar]
  25. T. B. Benjamin. Wave formation in laminar flow down an inclined plane. J. Fluid Mech., 2 (1957), 554–574. [CrossRef] [MathSciNet] [Google Scholar]
  26. C. S. Yih. Stability of liquid flow down an inclined plane. Phys. Fluids, 6 (1963), 321–334. [CrossRef] [Google Scholar]
  27. D. J. Benney. Long waves on liquid films. J. Math. Phys., 45 (1966), 150–155. [MathSciNet] [Google Scholar]
  28. B. Scheid, C. Ruyer-Quil, S. Kalliadasis, M. G. Velarde, R. Kh. Zeytounian. Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech., 538 (2005), 223–244. [CrossRef] [Google Scholar]
  29. C. Ruyer-Quil, P. Trevelyan, F. Giorgiutti-Dauphiné, C. Duprat, S. Kalliadasis. Modelling film flows down a fibre. J. Fluid Mech., 603 (2008), 431–462. [CrossRef] [Google Scholar]
  30. A. Pumir, P. Manneville, Y. Pomeau. On solitary waves running down an inclined plane. J. Fluid Mech., 135 (1983), 27–50. [CrossRef] [Google Scholar]
  31. C. Nakaya. Waves on a viscous fluid film down a vertical wall. Phys. Fluids, 1 (1989), 1143–1154. [CrossRef] [Google Scholar]
  32. A. Oron, O. Gottlieb. Nonlinear dynamics of temporally excited falling liquid films. Phys. Fluids, 14 (2002), 2622–2636. [CrossRef] [MathSciNet] [Google Scholar]
  33. B. Scheid, C. Ruyer-Quil, U. Thiele, O.A. Kabov, J.C. Legros, P. Colinet. Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech., 527 (2004), 303–335. [CrossRef] [Google Scholar]
  34. V. Ya. Shkadov. Wave modes in the flow of thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza, 1 (1967), 43–50. [Google Scholar]
  35. C. Ruyer-Quil, P. Manneville. Modeling film flows down inclined planes. Eur. Phys. J. B, 6 (1998), 277–292. [CrossRef] [EDP Sciences] [Google Scholar]
  36. C. Ruyer-Quil, P. Manneville. Improved Modeling of flows down inclined planes. Eur. Phys. J. B, 15 (2000), 357-369. [CrossRef] [EDP Sciences] [Google Scholar]
  37. C. Ruyer-Quil, P. Manneville. Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids, 14 (2002), 170–183. [CrossRef] [MathSciNet] [Google Scholar]
  38. S. Kalliadasis, A. Kiyashko, E. A. Demekhin. Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech., 475 (2003), 377–408. [CrossRef] [Google Scholar]
  39. I. L. Kliakhandler, S. H. Davis, S. G. Bankoff. Viscous beads on vertical fibre. J. Fluid Mech., 429 (2001), 381–390. [CrossRef] [Google Scholar]
  40. C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné. Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett., 98 (2007), 244502. [CrossRef] [PubMed] [Google Scholar]
  41. N. A. Malamataris, M. Vlachogiannis, V. Bontozoglou. Solitary waves on inclined films : Flow structure and binary interactions. Phys. Fluids, 14 (2002), 1082–1094. [CrossRef] [MathSciNet] [Google Scholar]
  42. B. Scheid, C. Ruyer-Quil, P. Manneville. Wave patterns in film flows : modelling and three-dimensional waves. J. Fluid Mech., 562 (2006), 183–222. [CrossRef] [Google Scholar]
  43. E. Doedel, A. Champneys, T. Fairfrieve, Y. Kuznetsov, B. Sandstede, X. Wang. AUTO97 : Continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, 1997. [Google Scholar]
  44. P. Huerre, P. A. Monkewitz. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid. Mech., 22 (1990), 473–537. [CrossRef] [Google Scholar]
  45. P. Huerre, M. Rossi. Hydrodynamic and Nonlinear Instabilities. In : Hydrodynamic Instabilities in Open Flows (Ed. C. Godréche, P. Manneville), Cambridge University Press, 1998, 81-294. [Google Scholar]
  46. H.-C. Chang, E. A. Demekhin, D. I. Kopelevich. Stability of a solitary pulse against wave packet disturbances in an active medium. Phys. Rev. Lett., 75 (1995), 1747–1750. [CrossRef] [PubMed] [Google Scholar]
  47. E. A. Demekhin, E. N. Kalaidin, S. Kalliadasis, S. Yu. Vlaskin. Three-dimensional localized coherent structures of surface turbulence. II. Λ solitons., Phys. Fluids, 19 (2007), 114104. [CrossRef] [Google Scholar]
  48. A. A. Golovin, A. A. Nepomnyashchy, L. M. Pismen. Interaction between short-scale Marangoni convection and long-scale deformation instability. Phys. Fluids, 6 (1994), 34–48. [CrossRef] [MathSciNet] [Google Scholar]
  49. U. Thiele, E. Knobloch. Thin liquid films on a slightly inclined heated plate. Physica D, 190 (2004), 213–248. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.