Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 99 - 145
DOI https://doi.org/10.1051/mmnp/20127408
Published online 09 July 2012
  1. A. Oron, S. H. Davis, S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931–980. [CrossRef]
  2. S. Kalliadasis, U. Thiele (Ed) Thin Films of Soft Matter. Springer-Wien, New York, 2007.
  3. R. V. Craster, O. K. Matar. Dynamics and stability of thin liquid films. Rev. Mod. Phys., 81 (2009), 1131–1198. [CrossRef]
  4. P. L. Kapitza. Wave flow of thin layers of viscous fluid : I. Free flow. Zh. Eksp. Tear. Fiz., 18 (1948), 3–18.
  5. P. L. Kapitza. Wave flow of thin layers of a viscous fluid : II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Eksp. Teor. Fiz., 18 (1948), 19–28.
  6. P. L. Kapitza, S. P. Kapitza. Wave flow of thin layers of a viscous fluid : III. Experimental study of undulatory flow conditions. Zh. Eksp. Teor. Fiz., 19 (1949), 105–120.
  7. H.-C. Chang. Wave evolution on a falling film. Ann. Rev. Fluid Mech., 26 (1994), 103–136. [CrossRef]
  8. H.-C. Chang, E. A. Demekhin. Complex Wave Dynamics on Thin Films. Elsevier, 2002.
  9. Z. Dagan, L. M. Pismen. Marangoni waves induced by a multistable chemical reaction on thin liquid films. J. Colloid Interface Sci., 99 (1984), 215–225. [CrossRef]
  10. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Interfacial hydrodynamic waves driven by chemical reactions. J. Eng. Math., 59 (2007), 207–220. [CrossRef]
  11. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Dynamics of a horizontal thin liquid film in the presence of reactive surfactants. Phys. Fluids, 19 (2007), 112102. [CrossRef]
  12. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Interfacial instabilities driven by chemical reactions. Eur. Phys. J. Special Topics, 166 (2009), 121–125. [CrossRef] [EDP Sciences]
  13. A. Y. Rednikov, Y. S. Ryazantsev, M. G. Velarde. Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids, 6 (1994), 451–468. [CrossRef] [MathSciNet]
  14. L. M. Pismen. Chemocapillary instabilities of a contact line. Phys. Rev. E, 81 (2010), 026307. [CrossRef]
  15. E. R. Gilliland, R. F. Baddour, P. L. T. Brian. Gas Absorption Accompanied by a Liquid-phase Chemical Reaction. Am. Inst. Chem. Eng. J., 4 (1958), 223. [CrossRef]
  16. P. M. J. Trevelyan, S. Kalliadasis. Dynamics of a reactive falling film at large Péclet numbers. I. Long-wave approximation. Phys. Fluids, 16 (2004), 3191-3208. [CrossRef] [MathSciNet]
  17. P. M. J. Trevelyan, S. Kalliadasis. Dynamics of a reactive falling film at large Péclet numbers. II. Nonlinear waves far from criticality : Integral-boundary-layer approximation. Phys. Fluids, 16 (2004), 3209-3226. [CrossRef] [MathSciNet]
  18. A. A. Nepomnyashchy, M. G. Velarde, P. Colinet. Interfacial Phenomena and Convection. Chapman & Hall, London, 2002.
  19. R. C. Weast, M. J. Astle. Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL, 1979.
  20. C. E. Wylock, P. Colinet, T. Cartage, B. Haut. Coupling between mass transfer and chemical reactions during the absorption of CO2 in a NaHCO3-Na2HCO3 brine : Experimental and theoretical study. Int. J. Chem. React. Engng., 6 (2008), A4.
  21. S. Kalliadasis, E. A. Demekhin, C. Ruyer-Quil, M. G. Velarde. Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech., 492 (2003), 303–338. [CrossRef] [MathSciNet]
  22. P. Trevelyan, S. Kalliadasis. Wave dynamics on a thin-liquid film falling down a heated wall. J. Eng. Math., 50 (2004), 177–208. [CrossRef]
  23. C. Ruyer-Quil, B. Scheid, S. Kalliadasis, M. G. Velarde, R. Kh. Zeytounian. Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech., 538 (2005), 199–222. [CrossRef]
  24. P. M. J. Trevelyan, B. Scheid, C. Ruyer-Quil, S. Kalliadasis. Heated falling films. J. Fluid Mech., 592 (2007), 295–334.
  25. T. B. Benjamin. Wave formation in laminar flow down an inclined plane. J. Fluid Mech., 2 (1957), 554–574. [CrossRef] [MathSciNet]
  26. C. S. Yih. Stability of liquid flow down an inclined plane. Phys. Fluids, 6 (1963), 321–334. [CrossRef]
  27. D. J. Benney. Long waves on liquid films. J. Math. Phys., 45 (1966), 150–155. [MathSciNet]
  28. B. Scheid, C. Ruyer-Quil, S. Kalliadasis, M. G. Velarde, R. Kh. Zeytounian. Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech., 538 (2005), 223–244. [CrossRef]
  29. C. Ruyer-Quil, P. Trevelyan, F. Giorgiutti-Dauphiné, C. Duprat, S. Kalliadasis. Modelling film flows down a fibre. J. Fluid Mech., 603 (2008), 431–462. [CrossRef]
  30. A. Pumir, P. Manneville, Y. Pomeau. On solitary waves running down an inclined plane. J. Fluid Mech., 135 (1983), 27–50. [CrossRef]
  31. C. Nakaya. Waves on a viscous fluid film down a vertical wall. Phys. Fluids, 1 (1989), 1143–1154. [CrossRef]
  32. A. Oron, O. Gottlieb. Nonlinear dynamics of temporally excited falling liquid films. Phys. Fluids, 14 (2002), 2622–2636. [CrossRef] [MathSciNet]
  33. B. Scheid, C. Ruyer-Quil, U. Thiele, O.A. Kabov, J.C. Legros, P. Colinet. Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech., 527 (2004), 303–335. [CrossRef]
  34. V. Ya. Shkadov. Wave modes in the flow of thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza, 1 (1967), 43–50.
  35. C. Ruyer-Quil, P. Manneville. Modeling film flows down inclined planes. Eur. Phys. J. B, 6 (1998), 277–292. [CrossRef] [EDP Sciences]
  36. C. Ruyer-Quil, P. Manneville. Improved Modeling of flows down inclined planes. Eur. Phys. J. B, 15 (2000), 357-369. [CrossRef] [EDP Sciences]
  37. C. Ruyer-Quil, P. Manneville. Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids, 14 (2002), 170–183. [CrossRef] [MathSciNet]
  38. S. Kalliadasis, A. Kiyashko, E. A. Demekhin. Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech., 475 (2003), 377–408. [CrossRef]
  39. I. L. Kliakhandler, S. H. Davis, S. G. Bankoff. Viscous beads on vertical fibre. J. Fluid Mech., 429 (2001), 381–390. [CrossRef]
  40. C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné. Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett., 98 (2007), 244502. [CrossRef] [PubMed]
  41. N. A. Malamataris, M. Vlachogiannis, V. Bontozoglou. Solitary waves on inclined films : Flow structure and binary interactions. Phys. Fluids, 14 (2002), 1082–1094. [CrossRef] [MathSciNet]
  42. B. Scheid, C. Ruyer-Quil, P. Manneville. Wave patterns in film flows : modelling and three-dimensional waves. J. Fluid Mech., 562 (2006), 183–222. [CrossRef]
  43. E. Doedel, A. Champneys, T. Fairfrieve, Y. Kuznetsov, B. Sandstede, X. Wang. AUTO97 : Continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, 1997.
  44. P. Huerre, P. A. Monkewitz. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid. Mech., 22 (1990), 473–537. [CrossRef]
  45. P. Huerre, M. Rossi. Hydrodynamic and Nonlinear Instabilities. In : Hydrodynamic Instabilities in Open Flows (Ed. C. Godréche, P. Manneville), Cambridge University Press, 1998, 81-294.
  46. H.-C. Chang, E. A. Demekhin, D. I. Kopelevich. Stability of a solitary pulse against wave packet disturbances in an active medium. Phys. Rev. Lett., 75 (1995), 1747–1750. [CrossRef] [PubMed]
  47. E. A. Demekhin, E. N. Kalaidin, S. Kalliadasis, S. Yu. Vlaskin. Three-dimensional localized coherent structures of surface turbulence. II. Λ solitons., Phys. Fluids, 19 (2007), 114104. [CrossRef]
  48. A. A. Golovin, A. A. Nepomnyashchy, L. M. Pismen. Interaction between short-scale Marangoni convection and long-scale deformation instability. Phys. Fluids, 6 (1994), 34–48. [CrossRef] [MathSciNet]
  49. U. Thiele, E. Knobloch. Thin liquid films on a slightly inclined heated plate. Physica D, 190 (2004), 213–248. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.