Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 5, 2012
Immunology
Page(s) 123 - 132
DOI https://doi.org/10.1051/mmnp/20127509
Published online 17 October 2012
  1. P. Ahlquist. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol., 4 (2006), No. 5, 371–382. [CrossRef] [PubMed] [Google Scholar]
  2. L. Ajamian, L. Abrahamyan, M. Milev, P.V. Ivanov, A.E. Kulozik, N.H. Gehring, A.J. Mouland. Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. RNA, 14 (2008), No. 5, 914–927. [CrossRef] [PubMed] [Google Scholar]
  3. I. Alves-Rodrigues, A. Mas, J. Díez. Xenopus Xp54 and Human RCK/p54 Helicases Functionally Replace Yeast Dhh1p in Brome Mosaic Virus RNA Replication. J.Virol., 81 (2007), No. 8, 4378–4380. [CrossRef] [Google Scholar]
  4. P.C. Angeletti, K. Kim, F.J. Fernandes, P.F. Lambert. Stable Replication of Papillomavirus Genomes in Saccharomyces cerevisiae. J. Virol., 76 (2002), No. 7, 3350–3358. [CrossRef] [PubMed] [Google Scholar]
  5. Y. Ariumi, M. Kuroki, K. Abe, H. Dansako, M. Ikeda, T. Wakita, N. Kato. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J. Virol., 81 (2007), No. 24, 13922–13926. [CrossRef] [PubMed] [Google Scholar]
  6. Y. Ariumi, M. Kuroki, Y. Kushima, K. Osugi, M. Hijikata, M. Maki, M. Ikeda, N. Kato. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J. Virol., 85 (2011), No. 14, 6882–6892. [CrossRef] [PubMed] [Google Scholar]
  7. S. Bandyopadhyay, R.C. Friedman, R.T. Marquez, K. Keck, B. Kong, M.S. Icardi, K.E. Brown, C.B. Burge, W.N. Schmidt, Y. Wang, A.P. McCaffrey. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29 : miR-29 overexpression reduces hepatitis C viral abundance in culture. J. Infect. Dis., 203 (2011), No. 12, 1753–1762. [CrossRef] [PubMed] [Google Scholar]
  8. A.L. Brass, D.M. Dykxhoorn, Y. Benita, N. Yan, A. Engelman, R.J. Xavier, J. Lieberman, S.J. Elledge. Identification of host proteins required for HIV infection through a functional genomic screen. Science, 319 (2008), No. 5865, 921–926. [CrossRef] [PubMed] [Google Scholar]
  9. F.D. Bushman, N. Malani, J. Fernandes, I. D’Orso, G. Cagney, T.L. Diamond, H. Zhou, D.J. Hazuda, A.S. Espeseth, R. Konig, S. Bandyopadhyay, T. Ideker, S.P. Goff, N.J. Krogan, A.D. Frankel, J.A. Young, S.K. Chanda. Host cell factors in HIV replication : meta-analysis of genome-wide studies. PLoS Pathog., 5 (2009), No. 5, e1000437. [CrossRef] [PubMed] [Google Scholar]
  10. J. Coller, R. Parker. Eukaryotic mRNA decapping. Annu. Rev. Biochem., 73 (2004), No. 1, 861–890. [CrossRef] [PubMed] [Google Scholar]
  11. Y.L. Chiu, T.M. Rana. RNAi in human cells : basic structural and functional features of small interfering RNA. Mol. Cell, 10 (2002), No. 3, 549–561. [CrossRef] [PubMed] [Google Scholar]
  12. H. Dahari, R.M. Ribeiro, C.M. Rice, A.S. Perelson. Mathematical modeling of subgenomic hepatitis C virus replication in Huh-7 cells. J. Virol., 81 (2007), No. 2, 750–760. [CrossRef] [PubMed] [Google Scholar]
  13. K.U. Dee, M.L. Shuler. A mathematical model of the trafficking of acid-dependent enveloped viruses : application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnol. Bioeng., 54 (1997), No. 5, 468–490. [CrossRef] [PubMed] [Google Scholar]
  14. J. Diez, M. Ishikawa, M. Kaido, P. Ahlquist. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl .Acad. Sci. U.S.A, 97 (2000), No. 8, 3913. [CrossRef] [Google Scholar]
  15. J.D. Dougherty, J.P. White, R.E. Lloyd. Poliovirus-mediated disruption of cytoplasmic processing bodies. J. Virol., 85 (2011), No. 1, 64–75. [CrossRef] [PubMed] [Google Scholar]
  16. C.J. Echeverri, P.A. Beachy, B. Baum, M. Boutros, F. Buchholz, S.K. Chanda, J. Downward, J. Ellenberg, A.G. Fraser, N. Hacohen, W.C. Hahn, A.L. Jackson, A. Kiger, P.S. Linsley, L. Lum, Y. Ma, B. Mathey-Prevot, D.E. Root, D.M. Sabatini, J. Taipale, N. Perrimon, R. Bernards. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods, 3 (2006), No. 10, 777–779. [CrossRef] [PubMed] [Google Scholar]
  17. M.M. Emara, M.A. Brinton. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), No. 21, 9041–9046. [CrossRef] [PubMed] [Google Scholar]
  18. M.M. Emara, H. Liu, W.G. Davis, M.A. Brinton. Mutation of mapped TIA-1/TIAR binding sites in the 3’ terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification. J. Virol., 82 (2008), No. 21, 10657–10670. [CrossRef] [PubMed] [Google Scholar]
  19. S.L. Erickson, J. Lykke-Andersen. Cytoplasmic mRNP granules at a glance. J. Cell Sci., 124 (2011), No. Pt 3, 293-297. [CrossRef] [PubMed] [Google Scholar]
  20. A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391 (1998), No. 6669, 806–811. [CrossRef] [PubMed] [Google Scholar]
  21. V. Fontanes, S. Raychaudhuri, A. Dasgupta. A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors. Virology, 394 (2009), No. 1, 82–90. [CrossRef] [PubMed] [Google Scholar]
  22. M.T. Franze de Fernandez, L. Eoyang, J.T. August. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature, 219 (1968), No. 154, 588. [CrossRef] [PubMed] [Google Scholar]
  23. B.L. Gancarz, L. Hao, Q. He, M.A. Newton, P. Ahlquist. Systematic Identification of Novel, Essential Host Genes Affecting Bromovirus RNA Replication. PLoS ONE, 6 (2011), No. 8, e23988. [CrossRef] [PubMed] [Google Scholar]
  24. D.M. Gelperin, M.A. White, M.L. Wilkinson, Y. Kon, L.A. Kung, K.J. Wise, N. Lopez-Hoyo, L. Jiang, S. Piccirillo, H. Yu, M. Gerstein, M.E. Dumont, E.M. Phizicky, M. Snyder, E.J. Grayhack. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev ., 19 (2005), No. 23, 2816–2826. [CrossRef] [Google Scholar]
  25. S. Ghaemmaghami, W.-K. Huh, K. Bower, R.W. Howson, A. Belle, N. Dephoure, E.K. O’Shea, J.S. Weissman. Global analysis of protein expression in yeast. Nature, 425 (2003), No. 6959, 737–741. [CrossRef] [PubMed] [Google Scholar]
  26. M. Giménez-Barcons, J. Díez. Yeast processing bodies and stress granules : self-assembly ribonucleoprotein particles. Microb. Cell Fact., 10 (2011), No. 73. [Google Scholar]
  27. J.I. Henke, D. Goergen, J. Zheng, Y. Song, C.G. Schuttler, C. Fehr, C. Junemann, M. Niepmann. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J., 27 (2008), No. 24, 3300–3310. [CrossRef] [PubMed] [Google Scholar]
  28. S.C. Hensel, J.B. Rawlings, J. Yin. Stochastic kinetic modeling of vesicular stomatitis virus intracellular growth. Bull. Math. Biol., 71 (2009), No. 7, 1671–1692. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. W. Hou, Q. Tian, J. Zheng, H.L. Bonkovsky. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology, 51 (2010), No. 5, 1494–1504. [CrossRef] [PubMed] [Google Scholar]
  30. J. Huang, F. Wang, E. Argyris, K. Chen, Z. Liang, H. Tian, W. Huang, K. Squires, G. Verlinghieri, H. Zhang. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat. Med., 13 (2007), No. 10, 1241–1247. [CrossRef] [PubMed] [Google Scholar]
  31. W.-K. Huh, J.V. Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S. Weissman, E.K. O’Shea. Global analysis of protein localization in budding yeast. Nature, 425 (2003), No. 6959, 686–691. [CrossRef] [PubMed] [Google Scholar]
  32. M. Ishaq, J. Hu, X. Wu, Q. Fu, Y. Yang, Q. Liu, D. Guo. Knockdown of cellular RNA helicase DDX3 by short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol. Biotechnol., 39 (2008), No. 3, 231–238. [CrossRef] [PubMed] [Google Scholar]
  33. H. Ishida, T. Tatsumi, A. Hosui, T. Nawa, T. Kodama, S. Shimizu, H. Hikita, N. Hiramatsu, T. Kanto, N. Hayashi, T. Takehara. Alterations in microRNA expression profile in HCV-infected hepatoma cells : involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway. Biochem Biophys. Res. Commun., 412 (2011), No. 1, 92–97. [CrossRef] [PubMed] [Google Scholar]
  34. I.M. Jacobson, J.G. McHutchison, G. Dusheiko, A.M. Di Bisceglie, K.R. Reddy, N.H. Bzowej, P. Marcellin, A.J. Muir, P. Ferenci, R. Flisiak, J. George, M. Rizzetto, D. Shouval, R. Sola, R.A. Terg, E.M. Yoshida, N. Adda, L. Bengtsson, A.J. Sankoh, T.L. Kieffer, S. George, R.S. Kauffman, S. Zeuzem. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med., 364 (2011), No. 25, 2405–2416. [CrossRef] [PubMed] [Google Scholar]
  35. M. Janda, P. Ahlquist. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell, 72 (1993), No. 6, 961–970. [CrossRef] [PubMed] [Google Scholar]
  36. R.K. Jangra, M. Yi, S.M. Lemon. DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation. J. Virol., 84 (2010), No. 13, 6810–6824. [CrossRef] [PubMed] [Google Scholar]
  37. Y. Jiang, E. Serviene, J. Gal, T. Panavas, P.D. Nagy. Identification of Essential Host Factors Affecting Tombusvirus RNA Replication Based on the Yeast Tet Promoters Hughes Collection. J. Virol., 80 (2006), No. 15, 7394–7404. [CrossRef] [PubMed] [Google Scholar]
  38. C.L. Jopling, M. Yi, A.M. Lancaster, S.M. Lemon, P. Sarnow. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309 (2005), No. 5740, 1577–1581. [CrossRef] [PubMed] [Google Scholar]
  39. A. Khong, E. Jan. Modulation of stress granules and P bodies during dicistrovirus infection. J. Virol., 85 (2011), No. 4, 1439–1451. [CrossRef] [PubMed] [Google Scholar]
  40. R. Konig, Y. Zhou, D. Elleder, T.L. Diamond, G.M. Bonamy, J.T. Irelan, C.Y. Chiang, B.P. Tu, P.D. De Jesus, C.E. Lilley, S. Seidel, A.M. Opaluch, J.S. Caldwell, M.D. Weitzman, K.L. Kuhen, S. Bandyopadhyay, T. Ideker, A.P. Orth, L.J. Miraglia, F.D. Bushman, J.A. Young, S.K. Chanda. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 135 (2008), No. 1, 49–60. [CrossRef] [PubMed] [Google Scholar]
  41. M. Korf, D. Jarczak, C. Beger, M.P. Manns, M. Kruger. Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors. J. Hepatol., 43 (2005), No. 2, 225–234. [CrossRef] [PubMed] [Google Scholar]
  42. D.B. Kushner, B.D. Lindenbach, V.Z. Grdzelishvili, A.O. Noueiry, S.M. Paul, P. Ahlquist. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc. Natl. Acad. Sci. U.S.A., 100 (2003), No. 26, 15764–15769. [CrossRef] [PubMed] [Google Scholar]
  43. R.C. Lee, R.L. Feinbaum, V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (1993), No. 5, 843–854. [CrossRef] [PubMed] [Google Scholar]
  44. Q. Li, A.L. Brass, A. Ng, Z. Hu, R.J. Xavier, T.J. Liang, S.J. Elledge. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl. Acad. Sci. U.S.A., 106 (2009), No. 38, 16410–16415. [CrossRef] [PubMed] [Google Scholar]
  45. W. Li, Y. Li, N. Kedersha, P. Anderson, M. Emara, K.M. Swiderek, G.T. Moreno, M.A. Brinton. Cell Proteins TIA-1 and TIAR Interact with the 3’ Stem-Loop of the West Nile Virus Complementary Minus-Strand RNA and Facilitate Virus Replication. J. Virol., 76 (2002), No. 23, 11989–12000. [CrossRef] [PubMed] [Google Scholar]
  46. K.I. Lim, T. Lang, V. Lam, J. Yin. Model-based design of growth-attenuated viruses. PLoS Comput. Biol., 2 (2006), No. 9, e116. [CrossRef] [PubMed] [Google Scholar]
  47. X. Liu, T. Wang, T. Wakita, W. Yang. Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology, 398 (2010), No. 1, 57–67. [CrossRef] [PubMed] [Google Scholar]
  48. M. Maeda, H. Sawa, M. Tobiume, K. Tokunaga, H. Hasegawa, T. Ichinohe, T. Sata, M. Moriyama, W.W. Hall, T. Kurata, H. Takahashi. Tristetraprolin inhibits HIV-1 production by binding to genomic RNA. Microbes Infect., 8 (2006), No. 11, 2647–2656. [CrossRef] [PubMed] [Google Scholar]
  49. G. Maga, F. Falchi, M. Radi, L. Botta, G. Casaluce, M. Bernardini, H. Irannejad, F. Manetti, A. Garbelli, A. Samuele, S. Zanoli, J.A. Este, E. Gonzalez, E. Zucca, S. Paolucci, F. Baldanti, J. De Rijck, Z. Debyser, M. Botta. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity : synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. ChemMedChem., 6 (2011), No. 8, 1371–1389. [CrossRef] [PubMed] [Google Scholar]
  50. K.L. Martin, M. Johnson, R.T. D’Aquila. APOBEC3G complexes decrease human immunodeficiency virus type 1 production. J. Virol., 85 (2011), No. 18, 9314–9326. [CrossRef] [PubMed] [Google Scholar]
  51. A. Mas, I. ALves-Rodrigues, A. Noueiry, P. Ahlquist, J. Díez. Host deadenylation-dependent mRNA decapping factors are required for a key step in brome mosaic virus RNA replication. J.Virol., 80 (2006), No. 1, 246. [CrossRef] [Google Scholar]
  52. S. Mnaimneh, A.P. Davierwala, J. Haynes, J. Moffat, W.-T. Peng, W. Zhang, X. Yang, J. Pootoolal, G. Chua, A. Lopez, M. Trochesset, D. Morse, N.J. Krogan, S.L. Hiley, Z. Li, Q. Morris, J. Grigull, N. Mitsakakis, C.J. Roberts, J.F. Greenblatt, C. Boone, C.A. Kaiser, B.J. Andrews, T.R. Hughes. Exploration of Essential Gene Functions via Titratable Promoter Alleles. Cell, 118 (2004), No. 1, 31–44. [CrossRef] [PubMed] [Google Scholar]
  53. J. Nakabayashi. A compartmentalization model of hepatitis C virus replication : an appropriate distribution of HCV RNA for the effective replication. J. Theor. Biol., 300 (2012), No. 110-117. [CrossRef] [PubMed] [Google Scholar]
  54. R. Nathans, C.Y. Chu, A.K. Serquina, C.C. Lu, H. Cao, T.M. Rana. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol. Cell, 34 (2009), No. 6, 696–709. [CrossRef] [PubMed] [Google Scholar]
  55. A.O. Noueiry, J. Chen, P. Ahlquist. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl. Acad. Sci. U.S.A., 97 (2000), No. 24, 12985–12990. [CrossRef] [PubMed] [Google Scholar]
  56. A.O. Noueiry, J. Díez, S.P. Falk, J. Chen, P. Ahlquist. Yeast Lsm1p-7p/Pat1p Deadenylation-Dependent mRNA-Decapping Factors Are Required for Brome Mosaic Virus Genomic RNA Translation. Mol. Cell. Biol., 23 (2003), No. 12, 4094–4106. [CrossRef] [PubMed] [Google Scholar]
  57. T. Panavas, P.D. Nagy. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus. Virology, 314 (2003), No. 1, 315–325. [CrossRef] [PubMed] [Google Scholar]
  58. T. Panavas, E. Serviene, J. Brasher, P.D. Nagy. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc. Natl. Acad. Sci. U.S.A., 102 (2005), No. 20, 7326–7331. [CrossRef] [PubMed] [Google Scholar]
  59. V. Pantaleo, L. Rubino, M. Russo. Replication of Carnation Italian Ringspot Virus Defective Interfering RNA in Saccharomyces cerevisiae. J. Virol., 77 (2003), No. 3, 2116–2123. [CrossRef] [PubMed] [Google Scholar]
  60. A.B. Parsons, R. Geyer, T.R. Hughes, C. Boone. Yeast genomics and proteomics in drug discovery and target validation. Prog. Cell Cycle Res., 5 (2003), No. 159-166. [Google Scholar]
  61. X. Peng, Y. Li, K.A. Walters, E.R. Rosenzweig, S.L. Lederer, L.D. Aicher, S. Proll, M.G. Katze. Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics, 10 (2009), No. 373. [Google Scholar]
  62. G. Pérez-Vilaró, N. Scheller, V. Saludes, J. Díez. HCV infection alters P-body composition but is independent of P-body granules. J. Virol., 86 (2012), No. 16, 8740–8749. [CrossRef] [PubMed] [Google Scholar]
  63. R. Persson, M. Hodges, B.D. King, A. Chen, K. Zeh, A.A. Levine. Pharmacokinetics of Miravirsen, a miR-122 inhibitor, predict the prolonged viral load reduction in treatment naive genotype 1 HCV infected patients. J. Hepatol., 56 (2012), Suppl. 2, S477. [CrossRef] [Google Scholar]
  64. F. Poordad, J. McCone, Jr., B.R. Bacon, S. Bruno, M.P. Manns, M.S. Sulkowski, I.M. Jacobson, K.R. Reddy, Z.D. Goodman, N. Boparai, M.J. DiNubile, V. Sniukiene, C.A. Brass, J.K. Albrecht, J.P. Bronowicki. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med., 364 (2011), No. 13, 1195–1206. [CrossRef] [PubMed] [Google Scholar]
  65. B.D. Price, L.D. Eckerle, L.A. Ball, K.L. Johnson. Nodamura virus RNA replication in Saccharomyces cerevisiae : heterologous gene expression allows replication-dependent colony formation. J. Virol., 79 (2005), No. 1, 495–502. [CrossRef] [PubMed] [Google Scholar]
  66. B.D. Price, R.R. Rueckert, P. Ahlouist. Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A., 93 (1996), No. 18, 9465–9470. [CrossRef] [PubMed] [Google Scholar]
  67. V. Raghavan, P.S. Malik, N.R. Choudhury, S.K. Mukherjee. The DNA-A Component of a Plant Geminivirus (Indian Mung Bean Yellow Mosaic Virus) Replicates in Budding Yeast Cells. J. Virol., 78 (2004), No. 5, 2405–2413. [CrossRef] [PubMed] [Google Scholar]
  68. G. Randall, M. Panis, J.D. Cooper, T.L. Tellinghuisen, K.E. Sukhodolets, S. Pfeffer, M. Landthaler, P. Landgraf, S. Kan, B.D. Lindenbach, M. Chien, D.B. Weir, J.J. Russo, J. Ju, M.J. Brownstein, R. Sheridan, C. Sander, M. Zavolan, T. Tuschl, C.M. Rice. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), No. 31, 12884–12889. [CrossRef] [PubMed] [Google Scholar]
  69. B. Reddy, J. Yin. Quantitative intracellular kinetics of HIV type 1. AIDS Res Hum. Retroviruses, 15 (1999), No. 3, 273–283. [CrossRef] [PubMed] [Google Scholar]
  70. A. Rivas-Aravena, P. Ramdohr, M. Vallejos, F. Valiente-Echeverria, V. Dormoy-Raclet, F. Rodriguez, K. Pino, C. Holzmann, J.P. Huidobro-Toro, I.E. Gallouzi, M. Lopez-Lastra. The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites. Virology, 392 (2009), No. 2, 178–185. [CrossRef] [PubMed] [Google Scholar]
  71. N. Scheller, L.B. Mina, R.P. Galao, A. Chari, M. Giménez-Barcons, A. Noueiry, U. Fischer, A. Meyerhans, J. Díez. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc. Natl. Acad. Sci. U.S.A., 106 (2009), No. 32, 13517–13522. [CrossRef] [PubMed] [Google Scholar]
  72. P. Sean, J.H. Nguyen, B.L. Semler. Altered interactions between stem-loop IV within the 5’ noncoding region of coxsackievirus RNA and poly(rC) binding protein 2 : effects on IRES-mediated translation and viral infectivity. Virology, 389 (2009), No. 1-2, 45–58. [CrossRef] [PubMed] [Google Scholar]
  73. K.E. Sherman, S.L. Flamm, N.H. Afdhal, D.R. Nelson, M.S. Sulkowski, G.T. Everson, M.W. Fried, M. Adler, H.W. Reesink, M. Martin, A.J. Sankoh, N. Adda, R.S. Kauffman, S. George, C.I. Wright, F. Poordad. Response-guided telaprevir combination treatment for hepatitis C virus infection. N. Engl. J. Med., 365 (2011), No. 11, 1014–1024. [CrossRef] [PubMed] [Google Scholar]
  74. Y. Sidorenko, U. Reichl. Structured model of influenza virus replication in MDCK cells. Biotechnol. Bioeng., 88 (2004), No. 1, 1–14. [CrossRef] [PubMed] [Google Scholar]
  75. M. Sioud. Promises and challenges in developing RNAi as a research tool and therapy. Methods Mol. Biol., 703 (2011), No. 173-187. [Google Scholar]
  76. A. Spear, N. Sharma, J.B. Flanegan. Protein-RNA tethering : the role of poly(C) binding protein 2 in poliovirus RNA replication. Virology, 374 (2008), No. 2, 280–291. [CrossRef] [PubMed] [Google Scholar]
  77. G. Sun, H. Li, X. Wu, M. Covarrubias, L. Scherer, K. Meinking, B. Luk, P. Chomchan, J. Alluin, A.F. Gombart, J.J. Rossi. Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res., 40 (2012), No. 5, 2181–2196. [CrossRef] [PubMed] [Google Scholar]
  78. A.W. Tai, Y. Benita, L.F. Peng, S.S. Kim, N. Sakamoto, R.J. Xavier, R.T. Chung. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe, 5 (2009), No. 3, 298–307. [CrossRef] [PubMed] [Google Scholar]
  79. G. Tiscornia, O. Singer, M. Ikawa, I.M. Verma. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. U.S.A., 100 (2003), No. 4, 1844–1848. [CrossRef] [PubMed] [Google Scholar]
  80. R. Triboulet, B. Mari, Y.L. Lin, C. Chable-Bessia, Y. Bennasser, K. Lebrigand, B. Cardinaud, T. Maurin, P. Barbry, V. Baillat, J. Reynes, P. Corbeau, K.T. Jeang, M. Benkirane. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science, 315 (2007), No. 5818, 1579–1582. [CrossRef] [PubMed] [Google Scholar]
  81. A.M. Ward, K. Bidet, A. Yinglin, S.G. Ler, K. Hogue, W. Blackstock, J. Gunaratne, M.A. Garcia-Blanco. Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’ UTR structures. RNA Biol., 8 (2011), No. 6, 1173–1186. [CrossRef] [PubMed] [Google Scholar]
  82. J.P. White, R.E. Lloyd. Regulation of stress granules in virus systems. Trends Microbiol., 20 (2012), No. 4, 175–183. [CrossRef] [PubMed] [Google Scholar]
  83. E.A. Winzeler, D.D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, R. Bangham,R. Benito, J.D. Boeke, H. Bussey, A.M. Chu, C. Connelly, K. Davis, F. Dietrich, S.W. Dow, M. El Bakkoury, F. Foury, S.H. Friend, E. Gentalen, G. Giaever, J.H. Hegemann, T. Jones, M. Laub, H. Liao, N. Liebundguth, D.J. Lockhart, A. Lucau-Danila, M. Lussier, N. M’Rabet, P. Menard, M. Mittmann, C. Pai, C. Rebischung, J.L. Revuelta, L. Riles, C.J. Roberts, P. Ross-MacDonald, B. Scherens, M. Snyder, S. Sookhai-Mahadeo, R.K. Storms, S. V?ronneau, M. Voet, G. Volckaert, T.R. Ward, R. Wysocki, G.S. Yen, K. Yu, K. Zimmermann, P. Philippsen, M. Johnston, R.W. Davis. Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285 (1999), No. 5429, 901–906. [CrossRef] [PubMed] [Google Scholar]
  84. H. Xia, Q. Mao, H.L. Paulson, B.L. Davidson. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol., 20 (2002), No. 10, 1006–1010. [CrossRef] [PubMed] [Google Scholar]
  85. M.L. Yeung, L. Houzet, V.S. Yedavalli, K.T. Jeang. A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J. Biol. Chem., 284 (2009), No. 29, 19463–19473. [CrossRef] [PubMed] [Google Scholar]
  86. Z. Yi, C. Fang, T. Pan, J. Wang, P. Yang, Z. Yuan. Subproteomic study of hepatitis C virus replicon reveals Ras-GTPase-activating protein binding protein 1 as potential HCV RC component. Biochem. Biophys. Res. Commun., 350 (2006), No. 1, 174–178. [CrossRef] [PubMed] [Google Scholar]
  87. S.F. Yu, P. Lujan, D.L. Jackson, M. Emerman, M.L. Linial. The DEAD-box RNA helicase DDX6 is required for efficient encapsidation of a retroviral genome. PLoS Pathog., 7 (2011), No. 10, e1002303. [CrossRef] [PubMed] [Google Scholar]
  88. K.-N. Zhao, I.H. Frazer. Replication of Bovine Papillomavirus Type 1 (BPV-1) DNA in Saccharomyces cerevisiae following Infection with BPV-1 Virions. J. Virol., 76 (2002), No. 7, 3359–3364. [CrossRef] [PubMed] [Google Scholar]
  89. H. Zhou, M. Xu, Q. Huang, A.T. Gates, X.D. Zhang, J.C. Castle, E. Stec, M. Ferrer, B. Strulovici, D.J. Hazuda, A.S. Espeseth. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe, 4 (2008), No. 5, 495–504. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.