Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 6, 2012
Biological oscillations
Page(s) 167 - 186
DOI https://doi.org/10.1051/mmnp/20127608
Published online 20 December 2012
  1. D.E. Clapham. Calcium signaling. Cell, 131 (2007), 1047–1058. [CrossRef] [PubMed] [Google Scholar]
  2. A.J. Laude, A.W.M. Simpson. Compartmentalized signalling : Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. FEBS J., 276 (2009), 1800–1816. [CrossRef] [PubMed] [Google Scholar]
  3. C. Montell. The latest waves in calcium signaling. Cell, 122 (2005), 157–163. [CrossRef] [PubMed] [Google Scholar]
  4. A.M. Oster, B. Thomas, D. Terman, C.P. Fall. The low conductance mitochondrial permeability transition pore confers excitability and CICR wave propagation in a computational model. J Theor Biol, 273 (2011), 216–231. [CrossRef] [PubMed] [Google Scholar]
  5. G. Hajnóczky, G. Csordás, M. Madesh, P. Pacher. The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J. Physiology, 529 (2000), 69–81. [CrossRef] [Google Scholar]
  6. J.E. Chipuk, L. Bouchier-Hayes, D.R. Green. Mitochondrial outer membrane permeabilization during apoptosis : the innocent bystander scenario. Cell Death Differ., 13 (2006) 1396–1400. [CrossRef] [PubMed] [Google Scholar]
  7. S.W. Tait, M.J. Parsons, F. Llambi, L. Bouchier-Hayes, S. Connell, C. Munoz-Pinedo, D.R. Green. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell, 18 (2010) 802-81. [CrossRef] [PubMed] [Google Scholar]
  8. G. Hajnóczky, G. Csordás, S. Das, C. Garcia-Perez, M. Saotome, S.S. Roy, M. Yi. Mitochondrial calcium signalling and cell death : approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium, 40 (2006) 553–560. [CrossRef] [PubMed] [Google Scholar]
  9. J.A.M. Borghans, G. Dupont, A. Goldbeter. Complex intracellular calcium oscillations. A theoretical exploration of possible mechanisms. Biophysical Chemistry, 66 (1997) 25–41. [CrossRef] [PubMed] [Google Scholar]
  10. M. Marhl, T. Haberichter, M. Brumen, R. Heinrich. Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems, 57 (2000) 75–86. [CrossRef] [PubMed] [Google Scholar]
  11. G. Csordás, P. Várnai, T. Golenár, S. Roy, G. Purkins, T.G. Schneider, T. Balla, G. Hajnóczky. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell, 39 (2010) 121–132. [CrossRef] [PubMed] [Google Scholar]
  12. E.A. Dennis, E.P. Kennedy. Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res, 13 (1972) 263–267. [PubMed] [Google Scholar]
  13. A.E. Rusinol, Z. Cui, M.H. Chen, J.E. Vance. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem, 269 (1994) 27494–27502. [PubMed] [Google Scholar]
  14. C. Giorgi, D. De Stefani, A. Bononi, R. Rizzuto, P. Pinton. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol, 41 (2009) 1817–1827. [CrossRef] [PubMed] [Google Scholar]
  15. M. Lebiedzinska, G. Szabadkai, A.W.E. Jones, J. Duszynski, M.R. Wieckowski. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol, 41 (2009) 1805–1816. [CrossRef] [PubMed] [Google Scholar]
  16. M. Giacomello, I. Drago, M. Bortolozzi, M. Scorzeto, A. Gianelle, P. Pizzo, T. Pozzan. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell., 38(2) (2010) 280–290. [CrossRef] [PubMed] [Google Scholar]
  17. G. Csordás, C. Renken, P. Várnai, L. Walter, D. Weaver, K.F. Buttle, T. Balla, C.A. Mannella, G. Hajnóczky. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol, 174 (2006) 915–921. [CrossRef] [PubMed] [Google Scholar]
  18. T. Hayashi, R. Rizzuto, G. Hajnóczky, T.-P. Su. MAM : more than just a housekeeper. Trends Cell Biol, 19 (2009) 81–88. [CrossRef] [PubMed] [Google Scholar]
  19. S. Schuster, M. Marhl, T. Höfer. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem, 269 (2002) 1333–1355. [CrossRef] [PubMed] [Google Scholar]
  20. D. Hariprasad, M. McNulty, J. Shi, P. Tian. Three-pool model of calcium signaling. https://digitalarchive.wm.edu/bitstream/handle/10288/1179/Hariprasad%20Daniel%202009.pdf?sequence=1 (2009). [Google Scholar]
  21. M. Marhl, S. Schuster, M. Brumen. Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations. Biophysical Chemistry, 71 (1998) 125–132. [CrossRef] [PubMed] [Google Scholar]
  22. H. Coe, M. Michalak. Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys, 28 Spec No Focus (2009) F96–F103. [Google Scholar]
  23. B. Schwaller. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol, 2(11) a004051. [Google Scholar]
  24. A.B. Parekh. Mitochondrial regulation of intracellular Ca2+ signaling : more than just simple Ca2+ buffers. News Physiol Sci, 18 (2003) 252–256. [PubMed] [Google Scholar]
  25. J. Keener, J. Sneyd. Mathematical Physiology, Springer, New York, 1998. [Google Scholar]
  26. J. Sneyd, A. Duffy, P.D. Dale. Traveling Waves in Buffered Systems : Applications to Calcium Waves. SIAM J. Appl. Math., 58 (1998) 1178–1192. [CrossRef] [Google Scholar]
  27. A. Skupin, M. Falcke. From puffs to global Ca2+ signals : how molecular properties shape global signals. Chaos, 19 (2009) 037111. [CrossRef] [PubMed] [Google Scholar]
  28. B.W. Hoogenboom, K. Suda, A. Engel, D. Fotiadis. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol., 370 (2007) 246–255. [CrossRef] [PubMed] [Google Scholar]
  29. V. Shoshan-Barmatz, V. De Pinto, M. Zweckstetter, Z. Raviv, N. Keinan, N. Arbel. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med., 31 (2010) 227–285. [CrossRef] [PubMed] [Google Scholar]
  30. G. Dupont, L. Combettes. What can we learn from the irregularity of Ca2+ oscillations ?. Chaos, 19 (2009) 037112. [CrossRef] [PubMed] [Google Scholar]
  31. J. Wagner, J. Keizer. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J., 67 (1994) 447–456. [CrossRef] [PubMed] [Google Scholar]
  32. A.P. Dawson, G.T. Rich, J.W. Loomis-Husselbee. Estimation of the free [Ca2+] gradient across endoplasmic reticulum membranes by a null-point method. Biochem J., 310 (1995) 371–374. [PubMed] [Google Scholar]
  33. M. Hoth, C.M. Fanger, R.S. Lewis. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol., 137 (1997) 633–648. [CrossRef] [PubMed] [Google Scholar]
  34. Y.-X. Li, J. Keizer, S.S. Stojilkovic, J. Rinzel. Calcium excitability of the ER membrane : an explanation for IP3-induced Ca2+ oscillations. Am J Physiol Cell Physiol, 269 (1995) C1079–C1092. [Google Scholar]
  35. J. Sneyd, K. Tsaneva-Atanasova, D. I. Yule, J. L. Thompson, T. J. Shuttleworth. Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci USA, 101 (2004) 1392–1396. [CrossRef] [Google Scholar]
  36. D.F. Babcock, B. Hille. Mitochondrial oversight of cellular Ca2+ signaling. Curr. Opin. Neurobiol., 8 (1998) 398–404. [CrossRef] [PubMed] [Google Scholar]
  37. M. Falcke. Reading the patterns in living cells - the physics of Ca2+ signaling. Advances in Physics, 53 (2004) 255–440. [CrossRef] [Google Scholar]
  38. A. Rasola, P. Bernardi. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis, 12 (2007) 815–833. [CrossRef] [PubMed] [Google Scholar]
  39. D.F. Babcock, J. Herrington, P.C. Goodwin, Y.B. Park, B. Hille. Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol, 136 (1997) 833–844. [CrossRef] [PubMed] [Google Scholar]
  40. S. Hehl, A. Golard, B. Hille. Involvement of mitochondria in intracellular calcium sequestration by rat gonadotropes. Cell Calcium, 20 (1996) 515–524. [CrossRef] [PubMed] [Google Scholar]
  41. N. Svichar, V. Shishkin, P. Kostyuk. Mitochondrial participation in modulation of calcium transients in DRG neurons. Neuroreport, 10 (1999) 1257–1261. [CrossRef] [PubMed] [Google Scholar]
  42. V.V. Chepyzhov, M.I. Vishik. Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence RI, 2002. [Google Scholar]
  43. W. Govaerts, Yu.A. Kuznetsov, http://www.matcont.ugent.be. [Google Scholar]
  44. S.K. Joseph, G. Hajnóczky. IP3 receptors in cell survival and apoptosis : Ca2+ release and beyond. Apoptosis, 12 (2007) 951–968. [CrossRef] [PubMed] [Google Scholar]
  45. S.S. Roy, G. Hajnóczky. Calcium, mitochondria and apoptosis studied by fluorescence measurements. Methods, 46 (2008) 213–223. [CrossRef] [PubMed] [Google Scholar]
  46. R. Rizzuto, P. Pinton, D. Ferrari, M. Chami, G. Szabadkai, P.J. Magalhães, F. Di Virgilio, T. Pozzan. Calcium and apoptosis : facts and hypotheses. Oncogene, 22 (2003) 8619–8627. [CrossRef] [PubMed] [Google Scholar]
  47. V.N. Govorukhin. http://www.math.rsu.ru/mexmat/kvm/matds/. [Google Scholar]
  48. R. Hegger, H. Kantz, T. Schreiber. http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html. [Google Scholar]
  49. H. Kantz, T. Schreiber. Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 2004. [Google Scholar]
  50. A.B. Özer, E. Akin. Tools for detecting chaos. SAU Fen Bilimleri Enstitusu Dergisi, 9 (2005) 60–66. [Google Scholar]
  51. B.J. Park, D.G. Lee, J.R. Yu, S.K. Jung, K. Choi, J. Lee, J. Lee, Y.S. Kim, J.I. Lee, J.Y. Kwon, J. Lee, A. Singson, W.K. Song, S.H. Eom, C.S. Park, D.H. Kim, J. Bandyopadhyay, J. Ahnn. Calreticulin, a calcium-binding molecular chaperone, is required for stress response and fertility in Caenorhabditis elegans. Mol Biol Cell., 12(9) (2001) 2835–2845. [CrossRef] [PubMed] [Google Scholar]
  52. L. Ellgaard, A. Helenius. ER quality control : towards an understanding at the molecular level. Current Opinion in Cell Biology, 13(4) (2001) 431–437. [CrossRef] [PubMed] [Google Scholar]
  53. T. Anelli, M. Alessio, A. Mezghrani, T. Simmen, F. Talamo, A. Bachi, R. Sitia. ERp44, a novel endoplasmic reticulum folding assistant of thethioredoxin family. The EMBO Journal, 21 (2002) 835–844. [CrossRef] [PubMed] [Google Scholar]
  54. T. Hayashi, T.P. Su. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell, 131(3) (2007) 596–610. [CrossRef] [PubMed] [Google Scholar]
  55. S.M. Jethmalani, K.J. Henle. Calreticulin associates with stress proteins : implications for chaperone function during heat stress. J Cell Biochem., 69(1) (1998) 30–43. [CrossRef] [PubMed] [Google Scholar]
  56. L.A. Mizzen, A.N. Kabiling, W.J. Welch. The two mammalian mitochondrial stress proteins, grp 75 and hsp 58, transiently interact with newly synthesized mitochondrial proteins. Cell Regul., 2(2) (1991) 165–179. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.