Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 2, 2013
Anomalous diffusion
Page(s) 100 - 113
DOI https://doi.org/10.1051/mmnp/20138207
Published online 24 April 2013
  1. E. Abad, S. B. Yuste, K. Lindenberg. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Phys. Rev. E 81 (2010), 031115. [CrossRef] [Google Scholar]
  2. E. Abad, S.B. Yuste, K. Lindenberg. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach.. Phys. Rev. E 86 (2012), 061120. [CrossRef] [Google Scholar]
  3. M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions. Dover, New York, 1965. [Google Scholar]
  4. A. V. Barzykin, M. Tachiya. Diffusion-influenced reaction kinetics on fractal structures. J. Chem. Phys. 99 (1993), 9591–9597. [CrossRef] [Google Scholar]
  5. O. Bénichou, M. Moreau, G. Oshanin. Kinetics of stochastically gated diffusion-limited reactions and geometry of random walk trajectories. Phys. Rev. E 61 (2000), 3388–3406. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. M. Berezhkovskii, D.-Y. Yang, S. H. Lin, Yu. A. Makhnovskii, S.-Y. Sheu. Smoluchowski-type theory of stochastically gated diffusion-influenced reactions. J. Chem. Phys. 106 (1997), 6985–6998. [CrossRef] [Google Scholar]
  7. R. Borrego, E. Abad, S.B. Yuste. Survival probability of a subdiffusive particle in a d-dimensional sea of mobile traps. Phys. Rev. E 80 (2009), 061121. [CrossRef] [Google Scholar]
  8. M. Bramson, J. L. Lebowitz. Asymptotic Behavior of Densities in Diffusion-Dominated Annihilation Reactions. Phys. Rev. Lett. 61 (1988), 2397–2400. [CrossRef] [PubMed] [Google Scholar]
  9. M. Bramson, J. L. Lebowitz. Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62 (1991), 297–372. [CrossRef] [Google Scholar]
  10. A. J. Bray, R. A. Blythe. Exact Asymptotics for One-Dimensional Diffusion with Mobile Traps. Phys. Rev. Lett. 89 (2002), 150601. [CrossRef] [PubMed] [Google Scholar]
  11. A.J. Bray, S. N. Majumdar, R. A. Blythe. Formal solution of a class of reaction-diffusion models: Reduction to a single-particle problem. Phys. Rev. E 67 (2003), 060102(R). [Google Scholar]
  12. S. F. Burlatsky, G. Oshanin, A. A. Ovchinnikov. Fluctuation induced kinetics of incoherent excitations quenching. Phys. Lett. A 139 (1989), 245–248. [CrossRef] [Google Scholar]
  13. L-C. Chen, R. Sun, A Monotonicity Result for the Range of a Perturbed Random Walk. arXiv:1203.1389v2 [math.PR] [Google Scholar]
  14. F. C. Collins, G. E. Kimball. Diffusion-controlled reaction rates. J. Colloid. Sci. 4 (1949), 425–437. [CrossRef] [Google Scholar]
  15. D. V. Donsker, S. R. S. Varadhan. Asymptotics for the Wiener sausage. Commun. Pure Appl. Math. 32 (1975), 525–565; [CrossRef] [Google Scholar]
  16. D. V. Donsker and S. R. S. Varadhan. On the number of distinct sites visited by a random walk. Commun. Pure Appl. Math. 32 (1979), 721–747. [CrossRef] [Google Scholar]
  17. J. D. Eaves, D. R. Reichman. The subdiffusive targeting problem. J. Phys. Chem. B 112 (2008), 4283-4289. [CrossRef] [PubMed] [Google Scholar]
  18. J. Franke, S. Majumdar. Survival probability of an immobile target surrounded by mobile traps. J. Stat. Mech. (2012) P05024. [Google Scholar]
  19. S. H. Glarum. Dielectric Relaxation of Isoamyl Bromide. J. Chem. Phys. 33 (1960), 639–643. [CrossRef] [Google Scholar]
  20. D. S. Grebenkov. Searching for partially reactive sites: Analytical results for spherical targets. J. Chem. Phys. 132 (2010), 034104. [CrossRef] [PubMed] [Google Scholar]
  21. B. I. Henry, T. A. M. Langlands, S. L. Wearne. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74 (2006), 031116. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. den Hollander, K.E. Shuler. Random walks in a random field of decaying traps. J. Stat. Phys. 67 (1992), 13–31. [CrossRef] [Google Scholar]
  23. B. H. Hughes. Random Walks and Random Environments. Volume 1: Random Walks. Clarendon Press, Oxford, 1995. [Google Scholar]
  24. J. Kim, Y. Jung, J. Jeon, S. Lee. Diffusion-influenced radical recombination in the presence of a scavenger. J. Chem. Phys. 104 (1996), 5784–5797. [CrossRef] [Google Scholar]
  25. M. A. Lomholt, I. M. Zaid, R. Metzler. Subdiffusion and Weak Ergodicity Breaking in the Presence of a Reactive Boundary. Phys. Rev. Lett. 98 (2007), 200603. [CrossRef] [PubMed] [Google Scholar]
  26. A. M. Mathai, R. K. Saxena. The H-function with Applications in Statistics and Other Disciplines. Wiley, New York, 1978. [Google Scholar]
  27. See ch. 3 in V. Méndez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer, Berlin, 2010. [Google Scholar]
  28. R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77. [NASA ADS] [CrossRef] [Google Scholar]
  29. M. Moreau, G. Oshanin, O. Bénichou, M. Coppey. Pascal principle for diffusion-controlled trapping reactions. Phys. Rev. E 67 (2003), 045104(R). [CrossRef] [Google Scholar]
  30. G. Oshanin, O. Bénichou, M. Coppey, M. Moreau. Trapping reactions with randomly moving traps: Exact asymptotic results for compact exploration. Phys. Rev. E 66 (2002), 060101(R). [CrossRef] [Google Scholar]
  31. G. Oshanin, O. Vasilyev, P. L. Krapivsky, J. Klafter. Survival of an evasive prey. PNAS 106 (2009), 13696–13701. [CrossRef] [Google Scholar]
  32. I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999. [Google Scholar]
  33. S. A. Rice. Diffusion-limited Reactions. Elsevier. Amsterdam, 1985. [Google Scholar]
  34. J. J. Ruiz-Lorenzo, S. B. Yuste, K. Lindenberg. Simulations for trapping reactions with subdiffusive traps and subdiffusive particles. J. Phys.: Condens. Matter. 19 (2007), 065120. [CrossRef] [Google Scholar]
  35. H. Sano, M. Tachiya. Partially diffusion controlled recombination. J. Chem. Phys. 71 (1979), 1276–1282. [CrossRef] [Google Scholar]
  36. K. Seki, A. I. Shushin, M. Wojcik, M. Tachiya. Specific features of the kinetics of fractional-diffusion assisted geminate reactions. J. Phys.: Condens. Matter 19 (2007), 065117. [CrossRef] [Google Scholar]
  37. K. Seki, M. Wojcik, M. Tachiya. Fractional reaction-diffusion equation. J. Chem. Phys. 119 (2003), 2165–2170. [CrossRef] [Google Scholar]
  38. V. P. Shkilev. Subdiffusion with the Disappearance of Particles at the Time of a Jump. J. Exp. Theor. Phys. (Springer) 112 (2011), 1071–1076. [CrossRef] [Google Scholar]
  39. M. F. Shlesinger, E. W. Montroll. On the Williams-Watts function of dielectric relaxation. PNAS 81 (1984), 1280–1283. [CrossRef] [Google Scholar]
  40. M. Smoluchowski. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92 (1917), 129–168. [Google Scholar]
  41. I. M. Sokolov, M. G. W. Schmidt, F. Sagués. Reaction-subdiffusion equations. Phys. Rev. E 73 (2006), 031102; [CrossRef] [Google Scholar]
  42. B. I. Henry, T. A. M. Langlands, S. L. Wearne. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74 (2006), 031116; [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Yadav, W. Horsthemke. Kinetic equations for reaction-subdiffusion systems: Derivation and stability analysis. Phys. Rev. E 74 (2006), 066118; [CrossRef] [MathSciNet] [Google Scholar]
  44. M. G. W. Schmidt, F. Sagués, I. M. Sokolov. Mesoscopic description of reactions for anomalous diffusion: a case study. J. Phys.: Condens. Matter 19 (2007) 065118; [CrossRef] [Google Scholar]
  45. D. Froemberg, I. M. Sokolov. Stationary Fronts in an A + B → 0 Reaction under Subdiffusion. Phys. Rev. Lett. 100 (2008), 108304; A. Yadav, S. M. Milu, W. Horsthemke. Turing instability in reaction-subdiffusion systems. Phys. Rev. E 78 (2008), 026116. [Google Scholar]
  46. S. B. Yuste, E. Abad, K. Lindenberg. Reactions in Subdiffusive Media and Associated Fractional Equations in Fractional Dynamics. Recent Advances. J. Klafter, S. C. Lim, and R. Metzler (Eds.). World Scientific, Singapore, 2011. [Google Scholar]
  47. S. B. Yuste, K. Lindenberg. Trapping reactions with subdiffusive traps and particles characterized by different anomalous diffusion exponents. Phys. Rev. E 72 (2005), 061103. [CrossRef] [MathSciNet] [Google Scholar]
  48. S. B. Yuste, K. Lindenberg. Subdiffusive target problem: Survival probability. Phys. Rev. E 76 (2007), 051114. [CrossRef] [MathSciNet] [Google Scholar]
  49. S. B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou, J. Klafter. Survival probability of a particle in a sea of mobile traps: A tale of tails. Phys. Rev. E 78 (2008), 021105. [CrossRef] [Google Scholar]
  50. S. B. Yuste, J. J. Ruiz-Lorenzo, K. Lindenberg. Target problem with evanescent subdiffusive traps. Phys. Rev. E 74 (2006), 046119. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.