Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 2, 2013
Anomalous diffusion
Page(s) 144 - 158
DOI https://doi.org/10.1051/mmnp/20138210
Published online 24 April 2013
  1. F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis, S. Leibler. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77 (1996), 4470–4473. [CrossRef] [PubMed] [Google Scholar]
  2. F. Barbi, M. Bologna, P. Grigolini. Linear response to perturbation of non-exponential renewal processes. Phys. Rev. Lett., 95 (2005), 220601. [CrossRef] [PubMed] [Google Scholar]
  3. E. Barkai. Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E, 63 (2001), 046118. [CrossRef] [Google Scholar]
  4. R. Bartussek, P. Hänggi, J. G. Kissner. Periodically rocked thermal ratchets. Europhys. Lett., 28 (1994), 459–464. [CrossRef] [Google Scholar]
  5. N. N. Bogolyubov, Elementary example of establishing thermal equilibrium in a system coupled to thermostat. in On some statistical methods in mathematical physics. Acad. Sci. Ukrainian SSR, Kiev, 1945, pp. 115-137, in Russian. [Google Scholar]
  6. J.-P. Bouchaud, A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep., 195 (1990), 127–293. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Burov and E. Barkai, Critical exponent of the fractional Langevin equation. Phys. Rev. Lett., 100 (2008), 070601. [CrossRef] [PubMed] [Google Scholar]
  8. Y. C. Chen, J. L. Lebowitz. Quantum particle in a washboard potential. I. Linear mobility and the Einstein relation. Phys. Rev. B, 46 (1992), 10743–10750. [CrossRef] [Google Scholar]
  9. K. S. Cole, R. H. Cole. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys., 9 (1941), 341–352. [CrossRef] [Google Scholar]
  10. W. H. Deng, E. Barkai, Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E, 79 (2009), 011112. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. W. Ford, M. Kac, P. Mazur. Statistical Mechanics of Assemblies of Coupled Oscillators. J. Math. Phys., 6 (1965), No. 4, 504-515. [CrossRef] [Google Scholar]
  12. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni. Stochastic Resonance. Rev. Mod. Phys., 70 (1998), 223-288. [Google Scholar]
  13. T. C. Gard. Introduction to Stochastic Differential Equations. Dekker, New York, 1988. [Google Scholar]
  14. A. Gemant. A method of analyzing experimental results obtained from elasto-viscous bodies., Physics, 7 (1936), 311–317. [CrossRef] [Google Scholar]
  15. I. Goychuk, P. Hänggi, Non-Markovian stochastic resonance. Phys. Rev. Lett., 91 (2003), 070601. [CrossRef] [PubMed] [Google Scholar]
  16. I. Goychuk, P. Hänggi, Theory of non-Markovian stochastic resonance. Phys. Rev. E, 69 (2004), 021104. [CrossRef] [MathSciNet] [Google Scholar]
  17. I. Goychuk, P. Hänggi, J. L. Vega, S. Miret-Artes. Non-Markovian stochastic resonance: three state model of ion channel gating. Phys. Rev. E, 71 (2005), 061906. [CrossRef] [MathSciNet] [Google Scholar]
  18. I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, P. Hänggi. Current and universal scaling in anomalous transport. Phys. Rev. E, 73 (2006), 020101 (Rapid Communication). [CrossRef] [Google Scholar]
  19. I. Goychuk and P. Hänggi. Anomalous escape governed by thermal 1/f noise., Phys. Rev. Lett., 99 (2007), 200601. [CrossRef] [PubMed] [Google Scholar]
  20. I. Goychuk, Anomalous relaxation and dielectric response. Phys. Rev. E, 76 (2007), 040102(R). [CrossRef] [Google Scholar]
  21. I. Goychuk. Viscoelastic subdiffusion: from anomalous to normal. Phys. Rev. E, 80 (2009), 046125. [CrossRef] [Google Scholar]
  22. I. Goychuk. Subdiffusive Brownian ratchets rocked by a periodic force. Chem. Phys., 375 (2010), 450–457. [CrossRef] [Google Scholar]
  23. I. Goychuk, P. Hänggi. Subdiffusive dynamics in washboard potentials: two different approaches and different universality classes. in J. Klafter, S. C. Lim, R. Metzler, editors. Fractional Dynamics, Recent Advances. World Scientific, Singapore, 2011, Ch. 13, pp. 307–329. [Google Scholar]
  24. I. Goychuk. Viscoelastic subdiffusion: generalized Langevin equation approach. Adv. Chem. Phys., 150 (2012), 187–253. [CrossRef] [Google Scholar]
  25. I. Goychuk. Is subdiffusional transport slower than normal?. Fluct. Noise Lett., 11 (2012), 1240009. [CrossRef] [Google Scholar]
  26. I. Goychuk, V. Kharchenko. Fractional Brownian motors and stochastic resonance. Phys. Rev. E, 85 (2012), 051131. [CrossRef] [Google Scholar]
  27. Y. He, S. Burov, R. Metzler, E. Barkai. Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett., 101 (2008), 058101. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  28. E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, P. Hänggi. Fractional Fokker-Planck dynamics: Numerical algorithm and simulations. Phys. Rev. E, 73 (2006), 046133. [CrossRef] [Google Scholar]
  29. E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi, Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving. Phys. Rev. Lett., 99 (2007), 120602. [CrossRef] [PubMed] [Google Scholar]
  30. E. Heinsalu, M. Patriarca, I. Goychuk, P. Hänggi. Fractional Fokker-Planck subdiffusion in alternating force fields. Phys. Rev. E, 79 (2009), 041137. [CrossRef] [Google Scholar]
  31. B. D. Hughes. Random walks and random environments, Vols. 1,2. Clarendon Press, Oxford, 1995. [Google Scholar]
  32. F. Jülicher, A. Ajdari, J. Prost. Modeling molecular motors. Rev. Mod. Phys., 69 (1997), 1269–1282. [CrossRef] [Google Scholar]
  33. V. Kharchenko, I. Goychuk. Flashing subdiffusive ratchets in viscoelastic media. New J. Phys., 14 (2012), 043042. [CrossRef] [Google Scholar]
  34. A. N. Kolmogorov. Dokl. Akad. Nauk SSSR, 26 (1940), 115–118 (in Russian), English transl. Wiener spirals and some other interesting curves in a Hilbert space, in V. M. Tikhomirov, editor. Selected Works of A. N. Kolmogorov, vol. I, Mechanics and Mathematics. Kluwer, Dordrecht, 1991, pp. 303-307. [Google Scholar]
  35. R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29 (1966), 255–284. [CrossRef] [Google Scholar]
  36. R. Kubo, M. Toda, and M. Hashitsume. Nonequilibrium Statistical Mechanics, 2nd ed. Springer, Berlin, 1991. [Google Scholar]
  37. R. Kupferman. Fractional kinetics in Kac-Zwanzig heat bath models. J. Stat. Phys., 114 (2004), 291–326. [CrossRef] [Google Scholar]
  38. A. Lubelski, I. M. Sokolov, J. Klafter. Nonergodicity mimics inhomogeneity in single particle tracking. Phys. Rev. Lett., 100 (2008), 250602. [CrossRef] [PubMed] [Google Scholar]
  39. E. Lutz. Fractional Langevin equation. Phys. Rev. E, 64 (2001), 051106. [CrossRef] [Google Scholar]
  40. M. O. Magnasco. Forced thermal ratchets. Phys. Rev. Lett., 71 (1993), 1477–1481. [CrossRef] [PubMed] [Google Scholar]
  41. F. Mainardi, P. Pironi. The fractional Langevin Equation: Brownian motion revisited. Extracta Mathematicae, 11 (1996), 140. [MathSciNet] [Google Scholar]
  42. Yu. A. Makhnovskii, V. M. Rozenbaum, D.-Y. Yang, S. H. Lin, T. Y. Tsong. Flashing ratchet model with high efficiency. Phys. Rev. E, 69 (2004), 021102. [CrossRef] [Google Scholar]
  43. B. B. Mandelbrot, J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Review, 10 (1968), No. 4, 422-437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  44. B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman Company, New York, 1977. [Google Scholar]
  45. P. Hänggi, F. Marchesoni. Artificial Brownian motors: bontrolling transport on the nanoscale. Rev. Mod. Phys., 81 (2009), 387–442. [CrossRef] [Google Scholar]
  46. J. C. Maxwell. On the dynamical theory of gases. Phil. Trans. R. Soc. Lond., 157 (1867), 49–88. [Google Scholar]
  47. R. Metzler, J. Klafter. The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 (2000) 1–77. [NASA ADS] [CrossRef] [Google Scholar]
  48. E. M. Montroll, G.H. Weiss. Random walks on lattices.2. J. Math. Phys., 6 (1965), No. 2, 167. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  49. R. G. Palmer, D. L. Stein, E. Abrahams, P. W. Anderson. Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett., 53 (1984), 958–961. [CrossRef] [Google Scholar]
  50. P. Reimann. Brownian motors: noisy transport far from equilibrium. Phys. Rep., 361 (2002), 57–265. [CrossRef] [MathSciNet] [Google Scholar]
  51. H. Scher, E. M. Montroll. Anomalous transit time dispersion in amorphous solids. Phys. Rev. B, 12 (1975), 2455–2477. [CrossRef] [Google Scholar]
  52. U. Seifert. Efficiency of autonomous soft nanomachines at maximum power. Phys. Rev. Lett., 106 (2011), 020601. [Google Scholar]
  53. K. Sekimoto. Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jpn., 66 (1997) 1234–1237. [CrossRef] [Google Scholar]
  54. M. F. Shlesinger. Asymptotic solutions of continuous time random walks. J. Stat. Phys., 10 (1974), 421–434. [CrossRef] [Google Scholar]
  55. I.M. Sokolov, J. Klafter. From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos, 15 (2005), 026103. [CrossRef] [PubMed] [Google Scholar]
  56. I. M. Sokolov, J. Klafter. Field-induced dispersion in subdiffusion. Phys. Rev. Lett., 97 (2006), 140602. [Google Scholar]
  57. I. M. Sokolov, E. Heinsalu, P. Hänggi, I. Goychuk. Universal fluctuations in subdiffusive transport. Europhys. Lett., 86 (2009), 30009. [CrossRef] [Google Scholar]
  58. C. Van den Broeck, N. Kumar, K. Lindenberg. Efficiency of isothermal molecular machines at maximum power. Phys. Rev. Lett., 108, (2012) 210602. [CrossRef] [PubMed] [Google Scholar]
  59. U. Weiss. Quantum Dissipative Systems, 2nd ed. World Scientific, Singapore, 1999. [Google Scholar]
  60. R. Zwanzig. Nonlinear generalized Langevin equations. J. Stat. Phys., 9 (1973), 215–220. [CrossRef] [Google Scholar]
  61. R. Zwanzig. Nonequilibrium statistical mechanics. Oxford Univ. Press, Oxford, 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.