Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 8, Number 2, 2013
Anomalous diffusion
|
|
---|---|---|
Page(s) | 44 - 54 | |
DOI | https://doi.org/10.1051/mmnp/20138204 | |
Published online | 24 April 2013 |
- R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 (2000), 1–77. [NASA ADS] [CrossRef] [Google Scholar]
- R. Metzler, J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys., A 37 (2004), R161–R208. [Google Scholar]
- T. Kosztołowicz, K. Dworecki, S. Mrówczyński. How to measure subdiffusion parameters. Phys. Rev. Lett., 94 (2005), 170602-1–170602-4. [Google Scholar]
- T. Kosztołowicz, K. Dworecki, S. Mrówczyński. Measuring subdiffusion parameters. Phys. Rev., E 71 (2005), 041105-1–041105-11. [Google Scholar]
- K. Seki, M. Wojcik, M. Tachiya. Recombination kinetics in subdiffusive media. J. Chem. Phys., 119 (2003), 7525–7533. [CrossRef] [Google Scholar]
- S.B. Yuste, L. Acedo, K. Lindenberg. Reaction front in an A + B → C reaction–subdiffusion process. Phys. Rev., E 69 (2004), 036126-1–036126-10. [Google Scholar]
- T. Kosztołowicz, K.D. Lewandowska. Time evolution of the reaction fornt in a subdiffusive system. Phys. Rev., E 78 (2008), 066103-1–066103-11. [Google Scholar]
- D. ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, 2000. [Google Scholar]
- V. Méndez, S. Fedotov, W. Horsthemke. Reaction–Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer-Verlag, Berlin, 2010. [Google Scholar]
- Z. Koza. The long–time behavior of initially separated A + B → 0 reaction–diffusion systems with arbitrary diffusion constants. J. Stat. Phys., 85 (1996), 179–191. [CrossRef] [Google Scholar]
- Z. Koza. The long–time behaviour of initially separated A + B(static) → 0 reaction–diffusion systems. Physica, A 240 (1997), 622–634. [Google Scholar]
- M.Z. Bazant, H.A. Stone. Asymptotics of reaction–diffusion fronts with one static and one diffusing reactant. Physica, D 147 (2000), 95–121. [CrossRef] [MathSciNet] [Google Scholar]
- L. Gálfi, Z. Rácz. Properties of the reaction front in an A + B → C type reaction–diffusion process. Phys. Rev., A 38 (1988), 3151–3154. [Google Scholar]
- S. Cornell, S. Koza, M. Droz. Dynamic Multiscaling of the Reaction–Diffusion Front for mA + nB → 0. Phys. Rev., E 52 (1995), 3500–3505. [CrossRef] [Google Scholar]
- K.D. Lewandowska, T. Kosztołowicz. Application of diffusion-reaction equations to model carious lesion progress. Physica, A 391 (2012), 2608–2616. [CrossRef] [Google Scholar]
- H. Taitelbaum, Y-E.L. Koo, S. Havlin, R. Kopelman, G.H. Weiss. Exotic Behavior of the Reaction Front in the A + B → C Reaction-Diffusion System. Phys. Rev., A 46 (1992), 2151–2154. [CrossRef] [PubMed] [Google Scholar]
- H. Taitelbaum, A. Yen, R. Kopelman, S. Havlin, G.H. Weiss. Effects of bias on the kinetics of A + B → C with initially separated reactants. Phys. Rev., E 54 (1996), 5942–5947. [CrossRef] [Google Scholar]
- Z. Jiang, C. Ebner. Simulation study of reaction fronts. Phys. Rev., A 42 (1990), 7483–7486. [CrossRef] [Google Scholar]
- K.D. Lewandowska, T. Kosztołowicz. Numerical study of subdiffusion equation. Acta Phys. Pol., B 38 (2007), 1847–1854. [Google Scholar]
- I. Podlubny. Fractional differential equations. Academic Press, San Diego, 1999. [Google Scholar]
- J. Crank. The mathematics of diffusion. Clarendon Press, Oxford, 1975. [Google Scholar]
- T. Kosztołowicz. From solutions of diffusive equation to the solution of subdiffusive one. J. Phys., A 37 (2004), 10779–10789. [Google Scholar]
- T. Kosztołowicz, K. Dworecki, K.D. Lewandowska. Subdiffusion in a system with thin membranes. Phys. Rev., E 86 (2012), 021123-1–021123-7. [Google Scholar]
- K.D. Lewandowska, T. Kosztołowicz, M. Piwnik. The perturbation method to solve subdiffudion–reaction equations. Acta Phys. Pol., B 43 (2012), 1065–1071. [CrossRef] [Google Scholar]
- K.D. Lewandowska, T. Kosztołowicz. Time evolution of the reaction front in a subdiffusive system. In: Noise and fluctuations, 2007, edited by M. Tacano, Y. Yamamoto, M. Nakao. American Institute of Physics, Melville, 2007. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.