Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Page(s) 165 - 185
Published online 28 November 2013
  1. A. Ajbar, K. Alhumaizi. Dynamics of the Chemostat: A Bifurcation Theory Approach. Boca Raton FL, Taylor & Francis Group, CRC Press, 2012. [Google Scholar]
  2. B.C. Baltzis, A.G. Fredrickson. Limitation of growth rate by two complementary nutrients: Some elementary but neglected considerations. Biotechnol. Bioeng., 31 (1988), 75–86. [CrossRef] [PubMed] [Google Scholar]
  3. A. Cunningham, R.M. Nisbet. Transients and oscillations in continuous culture. In M.J. Bazin (ed), Mathematics in Microbiology, pages 77–103, London, Academic Press, 1983. [Google Scholar]
  4. A. Dhooge, W. Govaerts, Yu.A. Kuznetsov. Matcont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM T. Math. Software, 29 (2003), 141–164. [Google Scholar]
  5. E.J. Doedel, B. Oldeman. Auto 07p: Continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University, Montreal, Canada, 2009. [Google Scholar]
  6. G.F. Gause. The Struggle for Existence. Hafner Publishing, New York, 1969. [Google Scholar]
  7. S.A.H. Geritz, É. Kisdi, G. Meszéna, J.A.J. Metz. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12 (1998), 35–57. [CrossRef] [Google Scholar]
  8. J.P. Grover. Resource Competition. Population and Community Biology series. Chapman & Hall, London, 1997. [Google Scholar]
  9. J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. volume 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 2 edition, 1985. [Google Scholar]
  10. G. Hardin. The competitive exclusion principle. Science, 131:3409 (1960), 1292–1297. [CrossRef] [PubMed] [Google Scholar]
  11. W.S. Harpole, J.T. Ngai, E.E. Cleland, E.W. Seabloom, E.T. Borer, M.E.S. Bracken, J.J. Elser, D.S. Gruner, H. Hillebrand, J.B. Shurin, J.E. Smith. Nutrient co-limitation of primary producer communities. Ecol. Lett., 125 (2011), 852–862. [CrossRef] [PubMed] [Google Scholar]
  12. S.-B. Hsu, K.-S. Cheng, S.P. Hubbell. Exploitative competition of microorganisms for two complementary nutrients in continuous cultures. SIAM J. Appl. Math., 41:3 (1981), 422–444 . [CrossRef] [Google Scholar]
  13. J. Huisman, F.J. Weissing. Biological conditions for oscillations and chaos generated by multispecies competition. Ecology, 82:10 (2001), 2682–2695 . [CrossRef] [Google Scholar]
  14. G. E. Hutchinson. The paradox of the plankton. Am. Nat., 95:882 (1961), 137–145. [CrossRef] [Google Scholar]
  15. B.W. Kooi, M.P. Boer, S.A.L.M. Kooijman. Resistance of a food chain to invasion by a top predator. Math. Biosci., 157 (1999), 217–236. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. B.W. Kooi. Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment. Acta Biotheor., 51:3 (2003), 189-222. [CrossRef] [PubMed] [Google Scholar]
  17. B.W. Kooi, L.D.J. Kuijper, S.A.L.M. Kooijman. Consequence of symbiosis for food web dynamics. J. Math. Biol., 49:3 (2004), 227-271. [MathSciNet] [PubMed] [Google Scholar]
  18. S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge University Press, Cambridge, 2010. [Google Scholar]
  19. S.A.L.M. Kooijman, H.A. Dijkstra, B.W. Kooi. Light-induced mass turnover in a mono-species community of mixotrophs. J. Theor. Biol., 214 (2002), 233–254. [CrossRef] [PubMed] [Google Scholar]
  20. Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York, 3 edition, 2004. [Google Scholar]
  21. T.E. Miller, J.H. Burns, P. Munguia, E.L. Walters, J.M. Kneitel, P. M. Richards, N. Mouquet, H. L. Buckley. A critical review of Twenty Years’ use of the Resource-Ratio Theory. Am. Nat., 165:4 (2005), 439-448. [CrossRef] [PubMed] [Google Scholar]
  22. R.D. Morton, R. Law, S.L. Pimm, J.A. Drake. On models for assembling ecological communities. Oikos, 75:3 (1996), 493-499. [CrossRef] [Google Scholar]
  23. S. Nattrass, S. Baigent, D.J. Murrell. Quantifying the likelihood of co-existence for communities with asymmetric competition. B. Math. Biol., 74:10 (2012), 2315-2338. [CrossRef] [Google Scholar]
  24. R.V. O’Neill, D.L. DeAngelis, J.J. Pastor, B.J. Jackson, W.M. Post. Multiple nutrient limitations in ecological models. Ecol. Model., 46 (1989), 147–163. [CrossRef] [Google Scholar]
  25. P. Schipper, A.M. Verschoor, M. Vos, W.M. Mooij. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol. Lett., 4 (2001), 404–407. [CrossRef] [Google Scholar]
  26. E. Sperfeld, D. Martin-Creuzburg, A. Wacker. Multiple resource limitation theory applied to herbivorous consumers: Liebig’s minimum rule vs. interactive co-limitation. Ecol. Lett., 15 (2012) 142–150. [CrossRef] [PubMed] [Google Scholar]
  27. H.L. Smith, P. Waltman. The Theory of the Chemostat. Cambridge University Press, Cambridge, 1994. [Google Scholar]
  28. T.A. Troost, B.W. Kooi, S.A.L.M. Kooijman. Bifurcation analysis can unify ecological and evolutionary aspects of ecosystems. Ecol. Model., 204 (2007), 253-268. [CrossRef] [Google Scholar]
  29. D. Tilman. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology, 58 (1977), 338–348. [CrossRef] [Google Scholar]
  30. D. Tilman. Resources: A graphical-mechanistic approach to competition and predation. Am. Nat., 116 (1980), 363–393. [CrossRef] [Google Scholar]
  31. D. Tilman. Resource competition and community structure. Princeton University Press, Princeton, 1982. [Google Scholar]
  32. D. Tilman. The resource-ratio hypothesis of plant succession. Am. Nat., 125:6 (1985), 827-852. [CrossRef] [Google Scholar]
  33. D. Tilman. Plant strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, 1988. [Google Scholar]
  34. J.B. Wilson, E. Spijkerman, J. Huisman. Is there really insufficient support for Tilman’s R* concept? A comment on Miller et al.. Am. Nat., 169:5 (2007), 700-706. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.