Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
Page(s) 139 - 150
Published online 07 February 2014
  1. C. Beck. Ergodic properties of a kicked damped particle. Commun. Math. Phys., 130 (1990), 51–60. [CrossRef] [Google Scholar]
  2. C. Beck, G. Roepstorff. From dynamical systems to the Langevin equation. Phys. A, 145 (1987), 1–14. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Billingsley. Convergence of probability measures, 2nd edition. John Wiley & Sons Inc., New York, 1999. [Google Scholar]
  4. C. A. Braumann. Itô versus Stratonovich calculus in random population growth. Math. Biosci., 206 (2007), 81–107. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. M. D. Donsker. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 1951 (1951), 12. [Google Scholar]
  6. P. Erdös, M. Kac. On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc., 52 (1946), 292–302. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. N. Ethier, T. G. Kurtz. Markov processes. Characterization and convergence. John Wiley & Sons Inc., New York, 1986. [Google Scholar]
  8. W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math., (2) 55 (1952), 468–519. [Google Scholar]
  9. D. Givon, R. Kupferman. White noise limits for discrete dynamical systems driven by fast deterministic dynamics. Phys. A 335 (2004), 385–412. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. A. Gottwald, I. Melbourne. Homogenization for deterministic maps and multiplicative noise. Proc. R. Soc. A 469 (2013), 20130201. [CrossRef] [Google Scholar]
  11. N. Ikeda, S. Watanabe. Stochastic differential equations and diffusion processes, 2nd edition. North-Holland Publishing Co., Amsterdam, 1989. [Google Scholar]
  12. J. Jacod, A. N. Shiryaev. Limit theorems for stochastic processes, 2nd edition. Springer-Verlag, Berlin, 2003. [Google Scholar]
  13. I. Karatzas, S. E. Shreve. Brownian motion and stochastic calculus, 2nd edition. Springer-Verlag, New York, 1991. [Google Scholar]
  14. M. C. Mackey, M. Tyran-Kamińska. Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system. Phys. Rep., 422 (2006), 167–222. [Google Scholar]
  15. I. Melbourne, A. M. Stuart. A note on diffusion limits of chaotic skew-product flows. Nonlinearity 24 (2011), 1361–1367. [CrossRef] [Google Scholar]
  16. F. Merlevède, M. Peligrad, S. Utev. Recent advances in invariance principles for stationary sequences. Probab. Surv., 3 (2006), 1–36. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Pang, R. Talreja, W. Whitt. Martingale proofs of many-server heavy-traffic limits for Markovian queues. Probab. Surv. 4 (2007), 193–267. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. V. Skorohod. Limit theorems for stochastic processes. Teor. Veroyatnost. i Primenen., 1 (1956), 289–319. [MathSciNet] [Google Scholar]
  19. D. W. Stroock, S. R. S. Varadhan. Multidimensional diffusion processes. Springer-Verlag, Berlin, 1979. [Google Scholar]
  20. M. Tyran-Kamińska. An invariance principle for maps with polynomial decay of correlations. Comm. Math. Phys., 260 (2005), 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Tyran-Kamińska. Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl., 120 (2010), 1629–1650. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Tyran-Kamińska. Weak convergence to Lévy stable processes in dynamical systems. Stoch. Dyn., 10 (2010), 263–289. [CrossRef] [MathSciNet] [Google Scholar]
  23. W. Whitt. Some useful functions for functional limit theorems. Math. Oper. Res., 5 (1980), 67–85. [CrossRef] [MathSciNet] [Google Scholar]
  24. W. Whitt. Stochastic-process limits. Springer-Verlag, New York, 2002. [Google Scholar]
  25. N. Wiener. The differential space. J. Math. Phys., 2 (1923), 121–174. [Google Scholar]
  26. E. Wong, M. Zakai. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist., 36 (1965), 1560–1564. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.