Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
Page(s) 1 - 3
Published online 24 April 2014
  1. R.M. Anderson. The epidemiology if HIV infection: Variable incubation plus infectious periods and heterogeity in sexual activity. J. R. Statist. Soc. A, 151 (1988), 66–93. [Google Scholar]
  2. R.M. Anderson, R.M. May. Infectious diseases of humans; dynamics and control, Oxford Univ. Press, Oxford, 1991. [Google Scholar]
  3. O. Diekmann, J.A.P. Heesterbeek, T. Britton, Mathematical tools for understanding infectious diseases dynamics, Princeton University Press, Princeton, 2013. [Google Scholar]
  4. T. House. Non-Markovian stochastic epidemics in extremely heterogeneous populations. Math. Model. Nat. Phenom., 9 (2014), no. 2, 153–160. [CrossRef] [EDP Sciences] [Google Scholar]
  5. A.M. Jolly, J. L. Wylie. Gonorrhoea and chlamydia core groups and sexual networks in Manitoba. Sex. Transm. Infect. 78 (2002), i145–i151. [CrossRef] [PubMed] [Google Scholar]
  6. D. Juher, V. Mañosa. Spectral properties of the connectivity matrix and the SIS-epidemic threshold for mid-size metapopulations. Math. Model. Nat. Phenom., 9 (2014), no. 2, 108–120. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. L.A. Meyers, B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, R.C. Brunham. Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232 (2005), 71–81. [CrossRef] [PubMed] [Google Scholar]
  8. B.H. McMahon, C.A. Manore, J.M. Hyman, M.X. LaBute, J.M. Fair. Coupling vector-host dynamics with weather geography and mitigation measures to model Rift Valley fever in Africa. Math. Model. Nat. Phenom., 9 (2014), no. 2, 161–177. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  9. J.C. Miller, I.Z. Kiss. Epidemic spread in networks: existing methods and current challenges. Math. Model. Nat. Phenom., 9 (2014), no. 2, 4–42. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  10. N. Nagy, I.Z. Kiss, P.L. Simon. Approximate master equations for dynamical processes on graphs. Math. Model. Nat. Phenom., 9 (2014), no. 2, 43–57. [CrossRef] [EDP Sciences] [Google Scholar]
  11. P. Rattana, J.C. Miller, I.Z. Kiss. Pairwise and edge-based models of epidemic dynamics on correlated weighted networks. Math. Model. Nat. Phenom., 9 (2014), no. 2, 58–81. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  12. M. Bradonjic. Outbreak of infectious diseases through the weighted random connection model. Math. Model. Nat. Phenom., 9 (2014), no. 2, 82–88. [Google Scholar]
  13. S. Riley et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science 300 (2003), 1961–1966. [CrossRef] [PubMed] [Google Scholar]
  14. E.O. Romero-Severson, G.D. Meadors, E.M. Volz. A generating function approach to HIV transmission with dynamic contact rates. Math. Model. Nat. Phenom., 9 (2014), no. 2, 121–135. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  15. F.D. Sahneh, F.N. Chowdhury, G. Brase, C.M. Scoglio. Individual-based information dissemination in multilayer epidemic modeling. Math. Model. Nat. Phenom., 9 (2014), no. 2, 136–152. [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Szabó-Solticzky, P.L. Simon. The effect of graph structure on epidemic spread in a class of modified cycle graphs. Math. Model. Nat. Phenom., 9 (2014), no. 2, 89–107. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.A. Yorke, H.W. Hethcote, A. Nold. Dynamics and control of the transmission of gonorrhea. Sex. Transm. Dis. 5 (1978), 51–56. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.