Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
|
|
---|---|---|
Page(s) | 161 - 177 | |
DOI | https://doi.org/10.1051/mmnp/20149211 | |
Published online | 24 April 2014 |
- S.F. Andriamandimby, A.E. Randrianarivo-Solofoniaina, E.M. Jeanmaire, L. Ravololomanana, L.T. Razafimanantsoa. Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009. Emerging Infectious Diseases. 16 (2010), no. 6, 963–970. [CrossRef] [PubMed] [Google Scholar]
- A. Anyamba, J.P. Chretien, J. Small, C.J. Tucker, P.B. Formenty. Prediction of a Rift Valley fever outbreak. PNAS. USA, 106 (2009), no. 3, 955–959. [CrossRef] [Google Scholar]
- Y. Ba, D. Diallo, I. Dia, M. Diallo. Feeding pattern of Rift Valley Fever virus vectors in Senegal. Implications in the disease epidemiology. Bull Soc Pathol Exot. 99 (2006), 283–9. [PubMed] [Google Scholar]
- Y. Ba, D. Diallo, C.M.F. Kebe, I. Dia, M. Diallo. Aspects of bioecology of two rift valley fever virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera : Culicidae). Journal of Medical Entomology. 42 (2005), 739–750. [CrossRef] [PubMed] [Google Scholar]
- B.H. Bird, T.G. Ksiazek, S.T. Nichol, N.J. Maclachlan. Rift Valley fever virus. J. Am. Vet. Med. Assoc. 234 (2009), 883–893. [CrossRef] [PubMed] [Google Scholar]
- H. Boshra, G. Lorenzo, N. Busquets, A. BrunA. Rift Valley Fever: Recent Insights into Pathogenesis and Prevention. J. of Virol. 85 (2011), 6098–6105. [CrossRef] [Google Scholar]
- Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates. Accessed October, 2010. [Google Scholar]
- V. Chevalier, S. De La Rocque, T. Baldet, L. Vial, F. Roger. Epidemiological processes involved in the emergence of vector-borne diseases: West Nile fever, Rift Valley fever, Japanese encephalitis and Crimean-Congo haemorrhagic fever. Revue scientifique et technique. 23 (2004), 535–555. [Google Scholar]
- V. Chevalier, M. Pepin, L. Plee, R. Lancelot. Rift Valley fever - a threat for Europe? Eurosurveillance. 15 (2010), no. 10, 18–28. [Google Scholar]
- N.C. Chitnis, J.M. Hyman, C.A. Manore. Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever. J. of Biol. Dyn. 7 (2013), 11–40. [CrossRef] [Google Scholar]
- J.M. Depinay, C.M. Mbogo, G. Killeen, B. Knols, J. Beier. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malaria Journal. 3 (2004), 29. [CrossRef] [PubMed] [Google Scholar]
- M. Diallo, P. Nabeth, K. Ba, A.A. Sall, Y. Ba. Mosquito vectors of the 1998-1999 outbreak of Rift Valley Fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Medical and Veterinary Entomology. 19 (2005), 119–126. [CrossRef] [PubMed] [Google Scholar]
- M.F. Ducatez, C.M. Olinger, A.A. Owoade, S. De Landtsheer, W. Ammerlaan. Multiple introductions of H5N1 in Nigeria - Phylogenetic analysis reveals that this deadly virus first arrived in Africa from different sources. Nature. 442 (2006), 37–37. [CrossRef] [PubMed] [Google Scholar]
- A. Evans, F. Gakuya, J.T. Paweska, M. Rostal, L. Akoolo. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife. Epidemiology and Infection. 136 (2008), 1261–1269. [CrossRef] [PubMed] [Google Scholar]
- M.B. Crabtree, R.C. Kading, J.P. Mutebi, J.J. Lutwama, B.R. Miller. Identification of host blood from engorged mosquitoes collected in western Uganda using cytochrome oxidase I gene sequences. J. Wildlife Dis. 49 (2013), 611–626. [CrossRef] [Google Scholar]
- C.A. Manore, B.R. Beechler. Interepidemic persistence of Rift Valley fever: vertical transmission or cryptic cycling? Transboundary and Emerging Diseases; 2013, DOI: 10.1111/tbed.12082. [Google Scholar]
- FAO, Geonetwork. Predicted global cattle density (2005), corrected for unsuitability, adjusted to match observed totals. avalable at http://www.fao.org/geonetwork/srv/en/metadata.show?id=12713, accessed October, 2010. [Google Scholar]
- F. Fenner, D.H. Henderson, I. Arita, Z. Jezek, I.A. Ladnyi. Smallpox and its Eradication World Health Organization, Geneva (1988) (freely available at http://biotech.law.lsu.edu/blaw/bt/smallpox/who/red-book/index.htm). [Google Scholar]
- H. Gaff, C. Burgess, J. Jackson, T. Niu, Y. Papelis. Mathematical model to assess the relative effectiveness of Rift Valley Fever countermeasures. Int. J. Artificial Life Res. 2 (2011), no. 2, 1–18. [CrossRef] [Google Scholar]
- D. Gao, C. Cosner, R.S. Cantrell, J.C. Beier, S. Ruan. Modeling the Spatial Spread of Rift Valley Fever in Egypt. Bul. Math. Biol. 75 (2013), 523-542. [CrossRef] [Google Scholar]
- T.P. Gargan 2nd, P.G. Jupp, R.J. Novak. Panveld oviposition sites of floodwater Aedes mosquitoes and attempts to detect transovarial transmission of Rift Valley fever virus in South Africa. Med Vet Entomol. 2 (1998), 231–236. [Google Scholar]
- P. Goswami, U.S. Murty, S.R. Mutheneni, A. Kukkuthady, S.T. Krishnan. A model of malaria epidemiology involving weather, exposure, and transmission applied to North East India. PLOS ONE 7 (2012), e49713. [CrossRef] [PubMed] [Google Scholar]
- F. Graw, T. Leitner, R.M. Ribeiro. Agent-based and phylogenetic analyses reveal how HIV-1 moves between risk groups: injecting drug users sustain the heterosexual epidemic in Latvia. Epidemics. 4 (2012), no. 2, 104–116. [CrossRef] [PubMed] [Google Scholar]
- M. Hansen, R. DeFries, J.R.G. Townshend, R. Sohlberg. Global land cover classification at 1km resolution using a decision tree classifier. Int. J. Rem. Sens. 21 (2000), 1331-1365. Accessed from http://www.landcover.org/data/landcover/ in October, 2010. [CrossRef] [Google Scholar]
- A. Hightower, C. Kinkade, P.M. Nguku, A. Anyangu, D. Mutonga, J. Omolo, M. Kariuki Njenga, D.R. Feikin, D. Schnabel, M. Ombok, R.F. Breiman. Relationship of Climate, Geography, and Geology to the Incidence of Rift Valley Fever in Kenya during the 2006-2007 Outbreak. Am. J. Trop. Med. Hyg. 86 (2012), no. 2, 373–2380. [CrossRef] [PubMed] [Google Scholar]
- R.M. Holdo, R.D. Holt, J.M. Fryxell. Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. Am. Nat. 173 (2009), 431–445. [CrossRef] [PubMed] [Google Scholar]
- H. Hoogstraal, J.M. Meegan, G.M. Khalil, F.K. Adham. Rift-valley fever epizootic in Egypt 1977-78 .2. ecological and entomological studies. Transactions of the Royal Society of Tropical Medicine and Hygiene. 73 (1979), no. 6, 624–629. [Google Scholar]
- R. Hughes-Fraire, A. Hagerman, B. McCarl, H. Gaff. Rift Valley Fever: An Economic Assessment of Agricultural and Human Vulnerability. presented at the Southern Agricultural Economics Association Annual Meeting, Corpus Christi, TX, February 5-8, 2011. [Google Scholar]
- T. Ikegami. Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Research. 95 (2012), 293–310. [CrossRef] [PubMed] [Google Scholar]
- T.R. Kasari, D.A. Carr, T.V. Lynn, J.T. Weaver. Evaluation of pathways for release of Rift Valley fever virus into domestic ruminant livestock, ruminant wildlife, and human populations in the continental United States. Javma-Journal of the American Veterinary Medical Association. 232 (2008), no. 4, 514–529. [CrossRef] [PubMed] [Google Scholar]
- T.M. Lund, B. Lindtjorn. Cattle and climate in Africa: How climate variability has influenced national cattle holdings from 1961–2008. PeerJ. 1, (2013), e55 DOI 10.7717/peerj55. [Google Scholar]
- C.A. Manore, B.H. McMahon, J.M. Fair, J.M. Hyman, M. Brown. Disease properties, geography, and mitigation strategies in a simulation spread of rinderpest across the United States. Vet. Res. 42 (2011), 1–55. [CrossRef] [PubMed] [Google Scholar]
- V. Martin, V. Chevalier, P.N. Ceccato, A. Anyamba, L. De Simone, J. Lubroth, S. de La Rocque, J. Domenech. The impact of climate change on the epidemiology and control of Rift Valley fever. Revue Scientifique et Technique. 27 (2008), 413–426. [Google Scholar]
- R. Metras, L.M. Collins, R.G. White, S. Alonso, V. Chevalier. Rift Valley Fever Epidemiology, Surveillance, and Control: What Have Models Contributed? Vector-borne and Zoonotic Diseases. 11 (2011), 761–771. [CrossRef] [Google Scholar]
- MMWR, Rift Valley fever outbreak: Kenya, November, 2006 - January, 2007. M.a.M. Report. (2007), 73–76. [Google Scholar]
- S.C. Mpeshe, H. Haario, J.M. Tchuenche. A mathematical model of Rift Valley Fever with human host. Acta Biotheoretica. 59 (2011), 3-4, 231–250. [CrossRef] [PubMed] [Google Scholar]
- B. Pattnaik, A.K. Pateriya, R. Khandia, C. Tosh, S. Nagarajan. Phylogenetic analysis revealed genetic similarity of the H5N1 avian influenza viruses isolated from HPAI outbreaks in chickens in Maharashtra, India with those isolated from swan in Italy and Iran in 2006. Current Science. 91, (2006), 77–81. [Google Scholar]
- M. Pepin, M. Bouloy, B.H. Bird, A. Kemp, J. Paweska. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res. 41, no. 6, (2010), 61. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- B. Schaeffer, B. Mondet, S. Touzeau. Using a climate dependent matrix model to predict mosquito abundance: Application to Aedes (Stegomyia) africanus and Aedes (Diceromyia) furcifer (Diptera : Culicidae), two main vectors of the yellow fever virus in West Africa. Infection Genetics and Evolution. 8 (2008), no. 4, S45-S45. [CrossRef] [Google Scholar]
- J. Shaman, J.F. Day. Reproductive Phase Locking of Mosquito Populations in Response to Rainfall Frequency. PLoS ONE. 2 (2007), no. 3, e331. [CrossRef] [PubMed] [Google Scholar]
- V. Soti, A. Tran, P. Degenne, V. Chevalier, D.L. Seen. Combining hydrology and mosquito population models to identify the drivers of Rift Valley Fever emergence in semi-arid regions of West Africa PLOS Negl. Trop. Diseases. 6 (2012), e1795. [CrossRef] [Google Scholar]
- M.J. Tildesley, N.J. Savill, D.J. Shaw, R. Deardon, S.P. Brooks. Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK Nature. 440 (2006), no. 7080, 83–86. [CrossRef] [PubMed] [Google Scholar]
- M.J. Tildesley, T.A. House, M.C. Bruhn, R.J. Curry, M. O’Neil. Impact of spatial clustering on disease transmission and optimal control. PNAS. USA, 107 (2010), 1041–1046. [CrossRef] [Google Scholar]
- M.J. Turell, C.A. Rossi, C.L. Bailey. Effect of extrinsic incubation-temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am. J. of Trop. Med. and Hyg. 34 (1985), no. 6, 1211–1218. [Google Scholar]
- M.J. Turell, D.J. Dohm, C.N. Mores, L. Terracina, D.L. Wallette Jr. Potential for North American mosquitoes to transmit Rift Valley fever virus. J. Am. Mosq. Cont. Ass. 24 (2008), no. 4, 502-507. [CrossRef] [PubMed] [Google Scholar]
- USAID, Food security and nutrition working group, East Africa cross-border trade bulletin: October-December 2011. (2012), 1–4. [Google Scholar]
- WHO. Rift Valley Fever Factsheet. 2013; Available from: http://www.who.int/mediacentre/factsheets/fs207/en/. [Google Scholar]
- P. Xie, P.A. Arkin. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bul. Am. Met. Soc. 78 (1997), no. 11, 2539–2558. Data set available at http://earlywarning.usgs.gov/fews/africa/index.php and accessed in October, 2010. [Google Scholar]
- L. Xue, H.M. Scott, L.W. Cohnstaedt, C. Scoglio. A network-based meta-population approach to model Rift Valley fever epidemics. Journal of Theoretical Biology. 306 (2012), 129–144. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.