Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
Page(s) 82 - 88
Published online 24 April 2014
  1. L.J.S. Allen, C.T. Bauch, C. Castillo-Chavez, D. Earn, Z. Feng, M.A. Lewis, J. Li, M. Martcheva, M. Nuño, J. Watmough, M.J. Wonham. Mathematical Epidemiology (Lecture Notes in Mathematics / Mathematical Biosciences Subseries). F. Brauer, P. van den Driessche, J. Wu eds., Springer, 2008. [Google Scholar]
  2. N. Alon, J. Spencer. The probabilistic method. John Wiley & Sons Inc., 2000. [Google Scholar]
  3. H. Andersson, T. Britton. Stochastic epidemic models and their statistical analysis. Springer Lecture Notes in Statistics, 151. Springer-Verlag, New York, 2000. [Google Scholar]
  4. L. Arriola, M. Hyman. Being sensitive to uncertainty. Computing in Science and Engineering, 9 (2007), No. 2, 10–20. [CrossRef] [Google Scholar]
  5. H.T. Banks, M. Davidian, J.R. Samuels Jr., K.L. Sutton. An inverse problem statistical methodology summary. Mathematical and statistical estimation approaches in epidemiology. G. Chowell, J.M. Hyman, L.M.A. Bettencourt, C. Castillo-Chavez eds., Springer, (2009), 249–302. [Google Scholar]
  6. M. Franceschetti, R. Meester. Random Networks for Communication: From Statistical Physics to Information Systems. Cambridge University Press, 2007. [Google Scholar]
  7. G. Grimmett. Percolation. Springer Verlag, 1999. [Google Scholar]
  8. R. Meester, R. Roy. Continuum Percolation. Cambridge University Press, 1996. [Google Scholar]
  9. M.D. Penrose. Random Geometric Graphs. Oxford. University Press, Oxford, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.