Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 148 - 164
DOI https://doi.org/10.1051/mmnp/20149310
Published online 28 May 2014
  1. J. D. Blount, M. P. Speed, G. D. Ruxton, P. A. Stephens. Warning displays may function as honest signals of toxicity. Proceedings of the Royal Society B: Biological Sciences, 276 (2009), 871-877. [CrossRef] [Google Scholar]
  2. M. Broom, G. D. Ruxton, M. P. Speed. Evolutionarily stable investment in anti-predatory defences and aposematic signalling. Mathematical Modeling of Biological Systems, volume 2 of Modeling and Simulation in Science, Engineering and Technology, (2008), 37–48. [Google Scholar]
  3. M. Broom, M. Speed, G. Ruxton. Evolutionarily stable defence and signalling of that defence. Journal of Theoretical Biology, 242 (2006), 32–34. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. F. Christiansen. On conditions for evolutionary stability for a continuously varying character. American Naturalist, 138 (1991), 37–50. [Google Scholar]
  5. F. Cortesi, K. L. Cheney. Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal of Evolutionary Biology, 23 (2010), 1509–1518. [CrossRef] [PubMed] [Google Scholar]
  6. H. Ellegren. A selection model of molecular evolution incorporating the effective population size. Evolution, 63 (2009), 301–305. [CrossRef] [PubMed] [Google Scholar]
  7. J. Endler. An overview of the relationships between mimicry and crypsis. Biological Journal of the Linnean Society, 16 (1981), 25–31. [CrossRef] [Google Scholar]
  8. J. Endler. Progressive background in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22 (1984), 187–231. [CrossRef] [Google Scholar]
  9. G. Gamberale, B. Tullberg. Evidence for a peak-shift in predator generalization among aposematic prey. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263 (1996), 1329–1334. [CrossRef] [Google Scholar]
  10. G. Gamberale-Stille, T. Guilford. Automimicry destabilizes aposematism: predator sample-and-reject behaviour may provide a solution. Proceedings of the Royal Society B: Biological Sciences, 271 (2004), 2621–2625. [CrossRef] [Google Scholar]
  11. J. Keehn. The effect of a warning signal on unrestricted avoidance behaviour. British Journal of Psychology, 50 (1959), 125–135. [CrossRef] [Google Scholar]
  12. T. J. Lee, N. M. Marples, M. P. Speed. Can dietary conservatism explain the primary evolution of aposematism? Animal Behaviour, 79 (2010), 63–74. [CrossRef] [Google Scholar]
  13. T. J. Lee, M. P. Speed, P. A. Stephens. Honest signaling and the uses of prey coloration. American Society of Naturalists, 178 (2011), E1–E9. [CrossRef] [Google Scholar]
  14. O. Leimar, M. Enquist, B. Sillen-Tullberg. Evolutionary stability of aposematic coloration and prey unprofitability: A theoretical analysis. American Naturalist, 128 (1986), 469–490. [CrossRef] [Google Scholar]
  15. L. Lindström, R. Alatalo, A. Lyytinen, J. Mappes. Strong antiapostatic selection against novel rare aposematic prey. Proceedings of the National Academy of Sciences, 98 (2001), 9181–9184. [CrossRef] [Google Scholar]
  16. C. G. Longson, J. M. P. Joss. Optimal toxicity in animals: predicting the optimal level of chemical defences. Functional Ecology, 20 (2006), 731–735. [CrossRef] [Google Scholar]
  17. J. Mappes, N. Marples, J. A. Endler. The complex business of survival by aposematism. Trends in Ecology and Evolution, 20 (2005), 598–603. [CrossRef] [Google Scholar]
  18. N. M. Marples, D. J. Kelly, R. J. Thomas. Perspective: The evolution of warning coloration is not paradoxical. Evolution, 59 (2005), 933–940. [CrossRef] [PubMed] [Google Scholar]
  19. J. Masel. Genetic drift. Current Biology, 21 (2011), R837–R838. [CrossRef] [Google Scholar]
  20. S. Merilaita, J. Tuomi, V. Jormalainen. Optimization of cryptic coloration in heterogeneous habitats. Biological Journal of the Linnean Society, 67 (1999), 151–161. [CrossRef] [Google Scholar]
  21. P. Moran. The statistical processes of evolutionary theory. Clarendon Press, Oxford University Press., 1962. [Google Scholar]
  22. M. Nowak. Evolutionary dynamics: exploring the equations of life. Belknap Press, 2006. [Google Scholar]
  23. S. Poulton. The colours of animals: their meaning and use, especially considered in the case of insects. D. Appleton and company, 1890. [Google Scholar]
  24. G. Ruxton, T. Sherratt, M. Speed. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, 2004. [Google Scholar]
  25. G. Ruxton, M. Speed, M. Broom. Identifying the ecological conditions that select for intermediate levels of aposematic signalling. Evolutionary Ecology, 23 (2009), 491–501. [CrossRef] [Google Scholar]
  26. R. S. Jones, S. C. Davis, M. P. Speed. Defence cheats can degrade protection of chemically defended prey. Ethology, 119 (2013), 52–57. [CrossRef] [Google Scholar]
  27. T. Sherratt. The coevolution of warning signals. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269 (2002), 741–746. [CrossRef] [Google Scholar]
  28. M. Speed, G. Ruxton. Aposematism: what should our starting point be? Proceedings of the Royal Society B: Biological Sciences, 272 (2005), 431–438. [Google Scholar]
  29. M. Speed, G. Ruxton. How bright and how nasty: explaining diversity in warning signal strength. Evolution, 61 (2007), 623–635. [CrossRef] [PubMed] [Google Scholar]
  30. M. P. Speed, G. D. Ruxton, J. D. Blount, P. A. Stephens. Diversification of honest signals in a predatorâĂŞprey system. Ecology Letters, 13 (2010), 744–753. [CrossRef] [PubMed] [Google Scholar]
  31. K. Summers, M. Clough. The evolution of coloration and toxicity in the poison frog family (dendrobatidae). Proceedings of the National Academy of Sciences, 98 (2001), 6227–6232. [CrossRef] [Google Scholar]
  32. C. Taylor, D. Fudenberg, A. Sasaki, M. A. Nowak. Evolutionary game dynamics in finite populations. Bulletin of mathematical biology, 66 (2004), 1621–1644. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. B. Thomas. On evolutionarily stable sets. Journal of Mathematical Biology, 22 (1985), 105–115. [CrossRef] [Google Scholar]
  34. J. Weibull. Evolutionary game theory. MIT press, 1997. [Google Scholar]
  35. M. Whitlock. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution, 54 (2000), 1855–1861. [CrossRef] [PubMed] [Google Scholar]
  36. Y. Willi, P. Griffin, J. Van Buskirk. Drift load in populations of small size and low density. Heredity, 110 (2012), 296–302. [CrossRef] [PubMed] [Google Scholar]
  37. K. Williams, K. Smith, F. Stephen. Emergence of 13-yr periodical cicadas (cicadidae: Magicicada): phenology, mortality, and predators satiation. Ecology, 74 (1993), 1143–1152. [CrossRef] [Google Scholar]
  38. S. Yachi, M. Higashi. The evolution of warning signals. Nature, 394 (1998), 882–884. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.