Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 4, 2014
Optimal control
Page(s) 131 - 152
DOI https://doi.org/10.1051/mmnp/20149409
Published online 20 June 2014
  1. N. André, L. Padovani, E. Pasquier. Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy? Fut. Oncology, 7(3) (2011), 385–394. [CrossRef] [Google Scholar]
  2. N. Andre, S. Abed, D. Orbach, C. Armari Alla, L. Padovani, E. Pasquier, J.C. Gentet, A. Verschuur. Pilot study of a pediatric metronomic 4-drug regimen. Oncotarget, 2 (2011), 960–965. [PubMed] [Google Scholar]
  3. G. Bocci, K. Nicolaou, R.S. Kerbel. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res., 62 (2002), 6938–6943. [PubMed] [Google Scholar]
  4. B. Bonnard, M. Chyba. Singular Trajectories and their Role in Control Theory. Mathématiques & Applications, Vol. 40. Springer Verlag, Paris, 2003. [Google Scholar]
  5. T. Browder, C.E. Butterfield, B.M. Kräling, B. Shi, B. Marshall, M.S. O’Reilly, J. Folkman. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res., 60 (2000), 1878–1886. [PubMed] [Google Scholar]
  6. M. Eisen. Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, Vol. 30. Springer Verlag, 1979. [Google Scholar]
  7. A. Friedman. Cancer as Multifaceted Disease. Math. Model. Nat. Phenom., 7 (2012), 1–26. [CrossRef] [EDP Sciences] [Google Scholar]
  8. R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden. Adaptive therapy. Cancer Research, 69 (2009), 4894–4903. [CrossRef] [PubMed] [Google Scholar]
  9. J.H. Goldie. Drug resistance in cancer: a perspective. Cancer and Metastasis Review, 20 (2001), 63–68. [CrossRef] [Google Scholar]
  10. J.H. Goldie, A. Coldman. Drug Resistance in Cancer. Cambridge University Press, 1998. [Google Scholar]
  11. J. Greene, O. Lavi, M. Gottesman, D. Levy. The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull. Math. Biol., 74 (2014), 627–653. [CrossRef] [Google Scholar]
  12. J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer Verlag, New York, 1983. [Google Scholar]
  13. P. Hahnfeldt, L. Hlatky. Cell resensitization during protracted dosing of heterogeneous cell populations. Rad. Res., 150 (1998), 681–687. [CrossRef] [Google Scholar]
  14. P. Hahnfeldt, J. Folkman, L. Hlatky. Minimizing long-term burden: the logic for metronomic chemotherapy dosing and its angiogenic basis. J. of Theo. Biol., 220 (2003), 545–554. [CrossRef] [PubMed] [Google Scholar]
  15. D. Hanahan, G. Bergers, E. Bergsland. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest., 105(8) (2000), 1045–1047. [Google Scholar]
  16. B. Kamen, E. Rubin, J. Aisner, E. Glatstein. High-time chemotherapy or high time for low dose? J. Clinical Oncology, 18(16) (2000), 2935–2937. [Google Scholar]
  17. T.J. Kindt, B.A. Osborne, R.A. Goldsby. Kuby Immunology. W.H. Freeman, 2006. [Google Scholar]
  18. D. Kirschner, J.C. Panetta. Modeling immunotherapy of the tumor-immune interaction. J. of Math. Biol., 37 (1998), 235–252. [Google Scholar]
  19. G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D.J. Hicklin, P. Bohlen, R.S. Kerbel. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest., 105(8) (2000), R15–R24. [Google Scholar]
  20. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol., 56 (1994), 295–321. [CrossRef] [PubMed] [Google Scholar]
  21. U. Ledzewicz, K. Bratton, H. Schättler. A 3-compartment model for chemotherapy of heterogeneous tumor populations. Acta Mat. Appl., (2014), to appear. [Google Scholar]
  22. U. Ledzewicz, M. Naghnaeian, H. Schättler. Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. of Math. Biol., 64 (2012), 557–577. [Google Scholar]
  23. U. Ledzewicz, O. Olumoye, H. Schättler. On optimal chemotherapy with a stongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Math. Biosci. Engr. (MBE), 10(3) (2012), 787–802. [CrossRef] [Google Scholar]
  24. U. Ledzewicz, H. Schättler. Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. of Optim. Th. Appl. (JOTA), 114 (2002), 609–637. [Google Scholar]
  25. U. Ledzewicz, H. Schättler. Analysis of a cell-cycle specific model for cancer chemotherapy. J. of Biol. Syst., 10 (2002), 183–206. [CrossRef] [Google Scholar]
  26. U. Ledzewicz, H. Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discr. Cont. Dyn. Syst., Ser. B, 6 (2006), 129–150. [Google Scholar]
  27. U. Ledzewicz, H. Schättler, M. Reisi Gahrooi, S. Mahmoudian Dehkordi. On the MTD paradigm and optimal control for combination cancer chemotherapy. Math. Biosci. Engr. (MBE), 10 (2013), 803–819. [CrossRef] [Google Scholar]
  28. R. Martin, K.L. Teo. Optimal Control of Drug Administration in Cancer Chemotherapy. World Scientific Publishers, 1994. [Google Scholar]
  29. A. Matzavinos, M. Chaplain, V.A. Kuznetsov. Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol., 21 (2004), 1–34. [CrossRef] [PubMed] [Google Scholar]
  30. A. d’Onofrio. A general framework for modelling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedial inferences. Physica D, 208 (2005), 202–235. [Google Scholar]
  31. A. d’Onofrio. Tumor evasion from immune control: strategies of a MISS to become a MASS. Chaos, Solitons and Fractals, 31 (2007), 261–268. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. d’Onofrio. Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy. Math. Comp. Modelling, 47 (2008), 614–637. [CrossRef] [Google Scholar]
  33. D. Pardoll. Does the immune system see tumors as foreign or self? Ann. Rev. of Immun., 21 (2003), 807–839. [CrossRef] [Google Scholar]
  34. E. Pasquier, U. Ledzewicz. Perspective on “More Is Not Necessarily Better”: Metronomic Chemotherapy. SMB Newsletter, 26(3) 2013, 9–10. [Google Scholar]
  35. E. Pasquier, M. Kavallaris, N. André. Metronomic chemotherapy: new rationale for new directions. Nat. Rev.| Clin. Onc., 7 (2010), 455–465. [Google Scholar]
  36. K. Pietras, D. Hanahan. A multi-targeted, metronomic and maximum tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Onc., 23(5) (2005), 939–952. [CrossRef] [Google Scholar]
  37. L.G. de Pillis, A. Radunskaya. A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theo. Med., 3 (2001), 79–100. [Google Scholar]
  38. L.G. de Pillis, A. Radunskaya, C.L. Wiseman. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res., 65 (2005), 7950–7958. [PubMed] [Google Scholar]
  39. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964. [Google Scholar]
  40. A.V. Rao, D.A. Benson, G.T. Huntington, C. Francolin, C.L. Darby, M.A. Patterson. User’s Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method. University of Florida Report, 2008. [Google Scholar]
  41. H. Schättler, U. Ledzewicz. Geometric Optimal Control. Springer, New York, 2012. [Google Scholar]
  42. H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi, M. Reisi Gahrooi. A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy. Proc. of the 51st IEEE Conference on Decision and Control, Maui, Hawaii, December 2012, 7691–7696. [Google Scholar]
  43. N.V. Stepanova. Course of the immune reaction during the development of a malignant tumour. Biophys., 24 (1980), 917–923. [Google Scholar]
  44. G.W. Swan. Role of optimal control in cancer chemotherapy. Math. Biosci., 101 (1990), 237–284. [CrossRef] [PubMed] [Google Scholar]
  45. J.B. Swann, M.J. Smyth. Immune surveillance of tumors. J. Clin. Invest., 117 (2007), 1137–1146. [Google Scholar]
  46. A. Swierniak. Optimal treatment protocols in leukemia - modelling the proliferation cycle. Proc. 12th IMACS World Congress, Paris, 4 (1988), 170–172. [Google Scholar]
  47. A. Swierniak. Cell cycle as an object of control. J. of Biol. Syst., 3 (1995), 41–54. [Google Scholar]
  48. A. Swierniak, U. Ledzewicz, H. Schättler. Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comp. Sci., 13 (2003), 357–368. [Google Scholar]
  49. A. Swierniak, A. Polanski, M. Kimmel. Optimal control problems arising in cell-cycle-specific cancer chemotherapy. Cell Prolif., 29 (1996), 117–139. [CrossRef] [PubMed] [Google Scholar]
  50. A. Swierniak, J. Smieja. Cancer chemotherapy optimization under evolving drug resistance. Nonlin. Anal., 47 (2000), 375–386. [CrossRef] [Google Scholar]
  51. H.P. de Vladar, J.A. González. Dynamic response of cancer under the influence of immunological activity and therapy. J. of Theo. Biol., 227 (2004), 335–348. [CrossRef] [Google Scholar]
  52. S.D. Weitman, E. Glatstein, B.A. Kamen. Back to the basics: the importance of concentration * time in oncology. J. of Clin. Onc., 11 (1993), 820–821. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.