Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 4, 2014
Optimal control
Page(s) 171 - 203
DOI https://doi.org/10.1051/mmnp/20149411
Published online 20 June 2014
  1. R. M. Anderson, R. M. May. the Invasion, Persistence and Spread of Infectious Diseases Within Animal and Plant Communities. Phil. Trans. R. Soc. Lond., 314 (1986), 533–570. [Google Scholar]
  2. S. Anita, V. Arnăutu, V. Capasso. An Introduction to Optimal Control Problems in Life Sciences. Springer Science, New York, 2011. [Google Scholar]
  3. S. Anita. Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordretcht, 2000. [Google Scholar]
  4. S. Anita. Optimal Control Harvesting for a Nonlinear Age-dependent Population Dynamics. J. Math. Anal. Appl., 226 (1998), 6–22. [CrossRef] [Google Scholar]
  5. R. Antia, B. Levin, R. M. May. Witin-host Population Dynamics and the Evolution and Maintenance of Microparasite Virulence. Am. Nat., 144 (1994), 457–472. [CrossRef] [Google Scholar]
  6. V. Barbu, M. Iannelli. Optimal Control of Population Dynamics. J. Optim. Theory Appl., 102 (1999), 1–14. [CrossRef] [Google Scholar]
  7. V. Barbu. Mathematical Methods in Optimization of Differential Systems. Kluwer Academic Publishers, Dordretcht, 1994. [Google Scholar]
  8. M. Brokate. Pontryagin’s Principle for Control Problems in Age-Dependent Population Dynamics. J. Math. Biol., 23 (1985), 75–101. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. S. Butler, D. Kirschner, S. Lenhart. Optimal Control of Chemotherapy Affecting the Infectivity Of HIV, Advances In Mathematical Population Dynamics-Molecules, Cells And Man. Editors: O. Arino, D. Axelrod, And M. Kimmel, World Scientific Press, Singapore, (1997) 557–569. [Google Scholar]
  10. C. Castillo-Chavez, Z. Feng. Global Stability of an Age-Structured Model for TB and its Applications to Optimal Vaccination Strategies. Math.Biosci., 151 (1998), 135–154. [CrossRef] [PubMed] [Google Scholar]
  11. D. Coombs, M. A. Gilchrist, J. Percus, A. S. Perelson. Optimizing Viral Production. Bull. Math. Biol., 65 (2003) 1003–1023. [CrossRef] [PubMed] [Google Scholar]
  12. U. Dissanayake, S. Dias, H. Polson, S. Longacre, P. Udagama-Randeniya. Immuno-Epidemiology of Plasmodium Vivax Merozoite Surface Proten-4. Bio. Sci., 37 (2008) 97–105. [Google Scholar]
  13. I. Ekeland. On the Variational Principle. J. Math. Appl., 47 (1974), 324–353. [Google Scholar]
  14. L. C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edition, 2010. [Google Scholar]
  15. L. C. Evans, R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992. [Google Scholar]
  16. Z. Feng, J. Velasco-Hernandez, B. Tapia-Santos. A Mathematical model for Coupling within-Host and Between-Host Dynamics in an Environmentally-driven Infectious Disease. Math. Biosci., 241 (2013), 49–55. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. Z. Feng, J. Velasco-Hernandez, B. Tapia-Santos, M.C. Leite. A Model for Coupled Within-Host and Between-Host Dynamics in an Infectious Disease. Nonlinear Dyn., 68 (2012), 401–411. [CrossRef] [Google Scholar]
  18. K.R. Fister, S. Lenhart, J. S. McNally. Optimizing Chemotherapy in an HIV Model. J. of Differential Equations, 1998 (1998), 1–12. [Google Scholar]
  19. K.R. Fister, S. Lenhart. Optimal Harvesting in an Age-Structured Predator-Prey Model. Appl. Math. Optim., 54 (2006), 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  20. K.R. Fister, S. Lenhart. Optimal Control of a Competitive System with Age-Structured. J. Math. Anal., 291 (2004), 526–537. [CrossRef] [MathSciNet] [Google Scholar]
  21. V.V. Ganusov, C.T. Bergstrom, R. Antia. Within-Host Population Dynamics and the Evolution of Microparasites in a Heterogeneous Host Population. Evolution, 56 (2002), no. 2, 213–223. [CrossRef] [PubMed] [Google Scholar]
  22. M. A. Gilchrist, D.A. Coombs. Evolution of Virulence: Interdependence, Constraints, and Selection using Nested models. Theor. Pop. Biol., 69 (2006), 145–153. [CrossRef] [Google Scholar]
  23. M. A. Gilchrist, A. Sasaki. Modeling Host-Parasite Coevolution: A Nested Approach based on Mechanistic Models. J. Theor. Biol., 218 (2002), 289–308. [CrossRef] [PubMed] [Google Scholar]
  24. A. B. Gumel, P. N. Shivakumar, B. M. Sahai. A Mathematical Model for the Dynamics of HIV-1 During the Typical Course of Infection. Nonlinear. Anal., 47 (2001), 1773–1783. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. E. Gurtin, R. C. MacCamy. Nonlinear Age-dependent Population Dynamics. Arch. Rat. Mech. Anal., 54 (1974), 281–300. [Google Scholar]
  26. K. Hattaf, N. Yousfi. Two optimal Treatments of HIV Infection Model. World J. Modell. Simul., 8 (2012), 27–35. [Google Scholar]
  27. J. M. Heffernan. Mathematical Immunology of Infectious Diseases. Math. Popul. Stud., 18 (2011), 47–54. [CrossRef] [Google Scholar]
  28. J. M. Heffernan, R. J. Smith, L. M. Wahl. Perspectives on Basic Reproduction Ratio. J. R. Soc. Interface, 2 (2005), 281–293. [CrossRef] [PubMed] [Google Scholar]
  29. B. Hellriegel. Immunoepidemiology-Bridging the Gap Between Immunology and Epidemiology. TRENDS in Parasitology, 17 (2001), 102–106. [CrossRef] [PubMed] [Google Scholar]
  30. Y. Hsieh, S. Sheu. The Effect of Density-Dependent Treatment and Behaviour change on the Dynamics of HIV Transmission. J. Math. Biol., 43 (2001), 69–80. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. M. Iannelli, M. Martcheva, F. A. Milner. Gender-Structured Population Modeling: Mathematical Methods. Numerics, and Simulations, SIAM, Philadelphia, 2005. [Google Scholar]
  32. H. Joshi. Optimal Control of an HIV Immunology Model. Optimal Control Appl. Methods, 23 (2002), 199–213. [Google Scholar]
  33. H. Joshi, S. Lenhart, K. Albright, K. Gipson. Modeling the Effect of Information Campaign on the HIV Epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757–770. [CrossRef] [MathSciNet] [Google Scholar]
  34. H. Joshi, S. Lenhart, M. Y. Li, L. Wang. Optimal Control Methods Applied to Disease Models. Contemp. Math., 410 (2006), 187–207. [CrossRef] [Google Scholar]
  35. M. Kgosimore, E. M. Lungu. The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Math. Biosci. Eng., 3 (2006), 297–312. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. D. Kirschner. Using Mathematics to Understand HIV Immune Dynamics. AMS Notices, 43 2 (1996), 191–202. [Google Scholar]
  37. D. Kirschner, G. F. Webb. A Model for Treatment Strategy in the Chemotherapy of AIDS. Bull. Math.Biol., 58 (1996), 367–391. [CrossRef] [Google Scholar]
  38. D. Kirschner, S. Lenhart, S. Serbin. Optimal Control of the Chemotherapy of HIV. J. Math. Biol., 35 (1997), 775–792. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  39. S. Lenhart, J. T. Wortman. Optimal Control Applied to Biological Models. Taylor & Francis, Boca Raton, FL, 2007. [Google Scholar]
  40. X. Li, J. Liu, M. Martcheva. An Age-Structured Two-strain Epidemic Model with Superinfection. Math. Biosci. Eng., 7 (2010), 123–147. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. M. Martcheva. An Immuno-epidemiological Model of Paratuberculosis. AIP Conf. Proc., 1404 (2011), 176–183. [CrossRef] [Google Scholar]
  42. M. Martcheva, F. A. Milner. A Two-Sex Age-Structured Population Model: Well Posedness. Math. Population Studies, 7 (1999), 111–129. [CrossRef] [Google Scholar]
  43. L. F. Murphy, S. J. Smith. Optimal Harvesting of an Age-Structured Population. J. Math. Biol., 29 (1990), 77–90 . [CrossRef] [Google Scholar]
  44. A. Perelson, D. E. Kirschner, R. D. Boer. Dynamics of HIV Infection of CD4+ T Cells. Math. Biosci., 114 (1993), 81–125. [CrossRef] [PubMed] [Google Scholar]
  45. Z. Qiu, X. Li, M. Martcheva. Multi-strain Persistence Induced by Host Age Structure. J. Math. Anal. Appl., 391 (2012), 395–612. [Google Scholar]
  46. E. Shim, Z. Feng, M. Martcheva. C. Castillo-Chavez, An Age-Structured Epidemic Model of Rotavirus with Vaccination. Math. Biol., 53 (2006), 719–746. [CrossRef] [MathSciNet] [Google Scholar]
  47. R. J. Smith. Explicitly Accounting for Antiretroviral Drug Uptake in Theoretical HIV Models Predicts Long-term Failure of Protease-only Therapy. J. Theor Biol., 251 (2008), 227–237. [CrossRef] [PubMed] [Google Scholar]
  48. G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, Inc, New York, 1985. [Google Scholar]
  49. E. K. Yeargers, R. W. Shonkwiler, J. V. Herod, An Introduction to the Mathematics of Biology with Computer Algebra Models, Birkhăuser, Boston, 1996. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.