Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 4, 2014
Optimal control
Page(s) 20 - 37
Published online 20 June 2014
  1. L.-I. Aniţa, S. Aniţa, V. Arnǎutu. Global behavior for an age-dependent population model with logistic term and periodic vital rates. Applied Mathematics and Computation, 206 (2008), No. 1, 368–379. [CrossRef] [Google Scholar]
  2. S. Aniţa. Analysis and Control of Age-Dependent Population Dynamics, Mathematical Modelling Series. Springer, 2000. [Google Scholar]
  3. L.-I. Aniţa S. Aniţa, V. Arnǎutu. Optimal harvesting for periodic age-dependent population dynamics with logistic term. Applied Mathematics and Computation, 215 (2009), 2701–2715. [CrossRef] [Google Scholar]
  4. S. Aniţa, V. Arnǎutu, R. Ştefǎnescu. Numerical optimal harvesting for a periodic age-structured population dynamics with logistic term. Numerical Functional Analysis and Optimization, 30 (2009), No. 3–4, 183–198. [CrossRef] [MathSciNet] [Google Scholar]
  5. F.J. Aragon, A.L. Dontchev, M. Gaydu, M.H. Geoffroy, V.M. Veliov. Metric Regularity of Newton’s Iteration. SIAM Journal on Control and Optimization, 49 (2011), No. 2, 339–362. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. W. Clark. Mathematical Bioeconomics: The Optimal Management of Renewable Resources, John Wiley, New York, l976. [Google Scholar]
  7. F. Colonius, W. Kliemann. Infinite time optimal control and periodicity, Applied Mathematics and Optimization. 20 (1989), No. 1, 113–130. [Google Scholar]
  8. A.L. Dontchev, R.T. Rockafellar. Implicit Functions and Solution Mappings. Springer Mathematics Monographs, Springer, Dordrecht, 2009. [Google Scholar]
  9. A.L. Dontchev, V.M. Veliov. Metric Regularity under Approximations. Control & Cybernetics, (2009), 38/4B, No. 4, 1283–1303. [Google Scholar]
  10. G. Feichtinger, G. Tragler, V.M. Veliov. Optimality conditions for age-structured control systems. J. Math. Anal. Appl., 288, (2003), No. 1, 47–68. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. F. Hartl, On the properness of one-dimensional periodic control problems. Systems & Control Letters, 20 (1993), No. 5, 393–395. [CrossRef] [Google Scholar]
  12. M. Iannelli. Mathematical theory of age-structured population dynamics, Applied mathematics monographs. C.N.R., Giardini editori e stampatori, Pisa, 1995. [Google Scholar]
  13. O. Tahvonen. Age-sructured optimization models in fisheries bioeconomics, Taylor and Francis, (2011), 140–173. [Google Scholar]
  14. H. Thieme, Mathematics in Population Biology, Mathematical Biology Series, Princeton University Press, 2003. [Google Scholar]
  15. G. F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York, 1985. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.