Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 4, 2014
Optimal control
Page(s) 216 - 226
DOI https://doi.org/10.1051/mmnp/20149413
Published online 20 June 2014
  1. G. Bergers, D. Hanahan. Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer, 8 (2008) 592–603. [Google Scholar]
  2. A. Czornik, A. Świerniak. On controllability with respect to the expectation of discrete time jump linear systems. Journal of the Franklin Institute, 338 (2001), no. 4, 443–453. [CrossRef] [Google Scholar]
  3. A. Czornik, A. Świerniak. On direct controllability of discrete time jump linear system. Journal of the Franklin Institute, 341 (2004), no. 6, 491–503. [CrossRef] [Google Scholar]
  4. M. Dolbniak, A. Swierniak. Comparison of simple models of periodic protocols for combined anticancer therapy. Computational and Mathematical Methods in Medicine, (2013), Article ID 567213, doi: 11.1055/2013/567213. [Google Scholar]
  5. A. D’Onofrio, A. Gandolfi. A family of models of angiogenesis and antiangiogenesis anti-cancer therapy. Mathematical Medicine and Biology, 26 (2009), 63–69. [CrossRef] [Google Scholar]
  6. A. D’Onofrio, A. Gandolfi. Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular "pruning”. Journal of Theoretical Biology, 264 (2010), 253–265. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. A. D’Onofrio, A. Gandolfi. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159–184. [Google Scholar]
  8. J.M.L. Ebos, R.S. Kerbel. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nature Reviews Clinical Oncology, 8 (2011), 210–221. [CrossRef] [PubMed] [Google Scholar]
  9. A. Ergun, K. Camphausen, L.M. Wein. Optimal scheduling of radiotherapy and angiogenic inhibitors. Bulletin of Mathematical Biology, 65 (2003), 407. [Google Scholar]
  10. J. Folkman. Tumor angiogenesis: therapeutic implications, N. Engl. J. Med., 295 (1971), 1182–1186. [Google Scholar]
  11. J. Folkman. Antiangiogenesis: new concept for therapy of solid tumors. Ann. Surg., 175 (1972), 409–416. [CrossRef] [PubMed] [Google Scholar]
  12. P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky. Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response and postvascular dormancy. Cancer Research, 59 (1999), 4770–4775. [Google Scholar]
  13. D. Hanahan, R.A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 144 (2011), 647–670. [Google Scholar]
  14. R.K. Jain. Normalization of tumor vasculature and microenvironment in antiangiogenic therapies. ASCO Annual Meeting, (2007), 412–417. [Google Scholar]
  15. R.S. Kerbel. A cancer therapy resistant to resistance. Nature, 390 (1997), 335–340. [CrossRef] [PubMed] [Google Scholar]
  16. J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991. [Google Scholar]
  17. J. Klamka. Constrained controllability of nonlinear systems. J. Math. Anal. Appl., 201 (1996), 365–374. [CrossRef] [Google Scholar]
  18. J. Klamka. Constrained controllability of semilinear systems with multiple delays in control. Bull. PAS, Techn. Sci., 52 (2004), 25-30. [Google Scholar]
  19. J. Klamka, A. Swierniak. Controllability of a model of combined anticancer therapy. Control and Cybernetics, 42 (2013), 125–138. [Google Scholar]
  20. T. Li-Song, J. Ke-Tao, H. Kui-Feng, W. Hao-Hao, C. Jiang, Y. De-Cao. Advances in combination of antiangiogenic agents targeting VEGF-binding and conventional chemotherapy and radiation for cancer treatment. Journal of the Chinese Medical Association, 73 (2010), no. 6, 281–288. [CrossRef] [Google Scholar]
  21. J. Ma, D.J. Waxman. Combination of anti-angiogenesis with chemotherapy for more effective cancer treatment. Molecular Cancer Therapeutics, 7 (2010), no. 12, 3670–3684. [CrossRef] [PubMed] [Google Scholar]
  22. S.R. McDougall, A.R. Anderson, M.A. Chaplain, J.A. Sherratt. Mathematical modeling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bulletin of Mathematical Biology, 64 (2002), no. 4, 673–702. [Google Scholar]
  23. M.J. Piotrowska, U. Forys. Analysis of the Hopf bifurcation for the family of angiogenic models. Journal of Mathematical Analysis and Applications, 382 (2011), 180–203. [Google Scholar]
  24. A. Swierniak. Comparison of six models of antiangiogenic therapy. Applicationes Mathematicae, 36 (2009), no. 3, 333–348. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Swierniak. Direct and indirect control of cancer populations. Bulletin of the Polish Academy of Sciences, Technical Sciences, 56 (2008), 367–378. [Google Scholar]
  26. A. Swierniak, J. Klamka. Control properties of models of antiangiogenic therapy. in: Advances in Automatics and Robotics (K. Malinowski and R. Dindorf R. Eds.), Monograph of Committee of Automatics and Robotics PAS, 16 (2011), no. 2, 300–312. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.