Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 194 - 203
Published online 17 July 2014
  1. E. J. Candès. Ridgelets: Theory and Applications. Ph.D. Thesis, Department of Statistics, Stanford University, 1998. [Google Scholar]
  2. E. J. Candès, D. L. Donoho. Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 2495–2509. [Google Scholar]
  3. E. J. Candès, D. L. Donoho. Continuous curvelet transform II. discretization and frames. Appl. Comput. Harmon. Anal., 19 (2005), 198–222. [CrossRef] [Google Scholar]
  4. V. CatanFormula . Products of two-wavelet multipliers and their traces. in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications 205, Birkhäuser, 2010, 195–211. [Google Scholar]
  5. I. Daubechies. Time-frequency localization operators, a geometric phase space approach. IEEE Trans. Inform. Theory, 34 (1988), 605–612. [Google Scholar]
  6. I. Daubechies. Ten Lectures on Wavelets, SIAM, 1992. [Google Scholar]
  7. J. Du, M. W. Wong. Traces of wavelet multiplers. C. R. Math. Rep. Acad. Sci. Canada, 23 (2001), 148–152. [Google Scholar]
  8. P. Goupillaud, A. Grossmann, J. Morlet. Cycle-octave and related transforms in seismic signal analysis. Geoexploration, 23 (1984), 85–102. [CrossRef] [Google Scholar]
  9. Z. He, M. W. Wong. Wave multipliers and signals. J. Austral. Math. Soc. Ser. B, 40 (1999), 437–446. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. J. Landau, H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty. Bell Syst. Tech. J., 40 (1961), 65–84. [CrossRef] [Google Scholar]
  11. J. Li, M. W. Wong. Localization operators for curvelet transforms. J. Pseudo-Differ. Oper. Appl., 3 (2012), 121–143. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. B. Lidskii. Nonself-adjoint operators with trace. Dokl. Akad. Nauk SSR, 125 (1959), 485–487; Amer. Math. Soc. Translations, 47 (1961), 43–46. [Google Scholar]
  13. H. J. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. Bell Syst. Tech. J., 41 (1962), 1295–1336. [CrossRef] [Google Scholar]
  14. D. Slepian. On bandwidth. Proc IEEE, 64 (1976), 292–300. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Slepian. Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev., 25 (1983), 379–393. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Slepian, H. O. Pollak. Prolate spheroidal wave functions. Fourier analysis and uncertainty, I, Bell Syst. Tech. J., 40 (1961), 43–64. [CrossRef] [Google Scholar]
  17. E. M. Stein, R. Shakarchi. Fourier Analysis: An Introduction. Princeton University Press, 2003. [Google Scholar]
  18. M. W. Wong. Weyl Transforms. Springer, 1998. [Google Scholar]
  19. M. W. Wong. Wavelet Transforms and Localization Operators. Birkhäuser, 2002. [Google Scholar]
  20. M. W. Wong. Discrete Fourier Analysis. Birkhäuser, 2011. [Google Scholar]
  21. M. W. Wong, Z. Zhang. Traces of two-wavelet multipliers. Integr. Equ. Oper. Theory, 42 (2002), 498–503. [CrossRef] [Google Scholar]
  22. M. W. Wong, Z. Zhang. Trace class norm inequalities for wavelet multipliers. Bull. London Math. Soc., 34 (2002), 739–744. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.