Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 295 - 308
Published online 19 August 2014
  1. R. Arens. Operational calculus of linear relations. Pacific J. Math. Vol., 11 (1961), no. 1, 9–23. [CrossRef] [Google Scholar]
  2. T.Ya. Azizov, I.S. Iokhvidov. Linear operators in spaces with an indefinite metric. John Wiley and Sons, Chichester, 1989. [Google Scholar]
  3. J. Bognar. Indefinite inner product spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1974. [Google Scholar]
  4. J. Cervera, A.J. van der Schaft, A. Baños. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica, 43 (2007), 212–225. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Courant. Dirac manifolds. Tr. Am. Math. Soc., 319 (1990), 631–661. [Google Scholar]
  6. V. Derkach, S. Hassi, M. Malamud, H. de Snoo. Boundary Relations and Their Weyl Families. Tr. of Amer. Math. Soc., 358 (2006), 5351–5400. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Dorfman. Dirac structures of integrable evolution equations. Phys. Lett. A, 125 (1987), 240–246. [CrossRef] [Google Scholar]
  8. C. Foias, A.E. Frazho. Redheffer products and the lifting of contractions on Hilbert space. Journal of Operator Theory, 11 (1984), 193–196. [MathSciNet] [Google Scholar]
  9. G. Golo. Interconnection Structures in Port-Based Modeling: Tools for Analysis and Simulation. Ph.D. Thesis, University of Twente, September 2002. [Google Scholar]
  10. G. Golo, O.V. Iftime, A. van der Schaft. Interconnection Structures in Physical Systems: a Mathematical Formulation. In Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems, Notre Dame University, USA, Editors D.S. Gilliam and J. Rosenthal, 2002. [Google Scholar]
  11. G. Golo, O.V. Iftime, H. Zwart, A. van der Schaft. Tools for analysis of Dirac structures on Hilbert spaces. Memorandum no. 1729, Faculty of Applied Mathematics, University of Twente, July 2004. [Google Scholar]
  12. Y. Gorrec Le, H.J. Zwart, B. Maschke. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control and Optimization, 2005, 1864–1892. [Google Scholar]
  13. O.V. Iftime, A. Sandovici, G. Golo. Tools for analysis of Dirac Structures on Banach Spaces. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, Sevilla, Spain, pp. 3856–3861, December 12–15, 2005. [Google Scholar]
  14. O.V. Iftime, A. Sandovici. Interconnection of Dirac structures via kernel/image representation. In Proceedings of the American Control Conference, San Francisco, California, USA, pp. 3571-3576, June 29 - July 1, 2011. [Google Scholar]
  15. O.V. Iftime, A. Sandovici. On different types of representations of Dirac structures on Hilbert spaces. ROMAI J., 7 (2011), no. 2, 79–88. [MathSciNet] [Google Scholar]
  16. M. Kurula, A. van der Schaft, H. Zwart. Composition of Infinite-Dimensional Linear Dirac-Type Structures. Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, 2006. [Google Scholar]
  17. M. Kurula, H.J. Zwart, A. van der Schaft, J. Behrndt. Dirac structure and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications, 372 (2010), 402–422. [Google Scholar]
  18. R.V. Polyuga, A. van der Schaft. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems and Control Letters, 61 (2012), 412-421. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Redheffer. On Certain linear fractional transformations. Journal of Mathematics and Physics, 39 (1960), 269–286. [Google Scholar]
  20. A. van der Schaft, B. Maschke. Modeling and Control of Mechanical Systems. Imperial College Press, Ch. Interconnected Mechanical Systems, part I: geometry of interconnection and implicit Hamiltonian systems, (1997), 1–15. [Google Scholar]
  21. A. van der Schaft. The Mathematics of Systems and Control: from Intelligent Control to Behavioral Systems. University of Groningen, Ch. Interconnection and Geometry, (1999), 203–217 . [Google Scholar]
  22. A. van der Schaft, B. Maschke. Hamiltonian formulation of distributed parameter systems with boundary energy flow. Journal of Geometry and Physics, 42 (2002), 166–194. [Google Scholar]
  23. J. Villegas. A Port-Hamiltonian Approach to Distributed Parameter Systems. PhD Thesis, University of Twente, 2007. [Google Scholar]
  24. H. Yoshimura, H. Jacobs, J.E. Marsden. Interconnection of Dirac Structures and Lagrange-Dirac Dynamical Systems. In Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest, Hungary, (2010), 5–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.