Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 6, 2014
Blood flows
|
|
---|---|---|
Page(s) | 117 - 141 | |
DOI | https://doi.org/10.1051/mmnp/20149609 | |
Published online | 24 September 2014 |
- M. Anand, K.R. Rajagopal. A shear-thinning viscoelastic fluid model for describing the flow of blood. Intern. Journal of Cardiovasc. Medicine and Sci., 4 no. 2, (2004), 59–68, 2004. [Google Scholar]
- N. Arada, M. Pires, A. Sequeira. Numerical simulations of a shear-thinning Oldroyd-B fluids in curved pipes. IASME Transactions, 2 no. 6 (2005), 948–959. [MathSciNet] [Google Scholar]
- N. Arada, M. Pires, A. Sequeira.Numerical approximation of a viscoelastic Oldroyd-B flows in curved pipes. In Y. Giga, H. Kozono, H. Okamoto, and Y. Shibata, editors, Kyoto Conference on the Navier-Stokes Equations and their Applications, volume B1 of Kôkyûroku Bessatsu, RIMS, March 2007, 43–70. [Google Scholar]
- N. Arada, M. Pires, A. Sequeira. Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53 (2007), 625–646. [CrossRef] [MathSciNet] [Google Scholar]
- R.B. Bird, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, volume I. Fluid Mechanics. John Willey & Sons, second edition, 1987. [Google Scholar]
- R.B. Bird, Ch.F. Curtis, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, volume II. Kinetic Theory. John Willey & Sons, second edition, 1987. [Google Scholar]
- T. Bodnár, K.R. Rajagopal, A. Sequeira. Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Mathematical Modelling of Natural Phenomena, 6 no. 5 (2011), 1–24. [Google Scholar]
- T. Bodnár, A. Sequeira. Numerical study of the significance of the non-Newtonian nature of blood in steady flow through a stenosed vessel. In R. Rannacher and A. Sequeira, editors, Advances in Mathematical Fluid Mechanics, Springer Verlag, (2010), 83–104. [Google Scholar]
- T. Bodnár, A. Sequeira, M. Prosi. On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Applied Mathematics and Computation, 217 no. 11 (2011), 5055–5067. [CrossRef] [MathSciNet] [Google Scholar]
- J. Chen, X.-Y. Lu. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics, 2005. [Google Scholar]
- B. Cockburn, G. Karniadakis, C.Shu. Discontinuous Galerkin Methods Theory, Computation and Applications, volume 11 of Lecture Notes in Computer Science and Engineering. Springer Verlag, 2000. [Google Scholar]
- L. Dintenfass. Blood Viscosity, Hyperviscosity & Hyperviscoaemia. MTP Press Limited (Kluwer), 1985. [Google Scholar]
- A. Ern, J. Guermond. Discontinuous Galerkin methods for Friedrichs systems i. general theory. SIAM Journal of Numerical Analysis, 44 no. 2 (2006), 753–778. [Google Scholar]
- P. Español, X.F. Yuan, R.C. Ball. Shear banding flow in the Johnson-Segalman fluid. Journal of Non-Newtonian Fluid Mechanics, 65 (1996), 93–109. [CrossRef] [Google Scholar]
- M.M. Fyrillasa, G.C. Georgioua, D. Vlassopoulos. Time-dependent plane poiseuille flow of a Johnson-Segalman fluid. Journal of Non-Newtonian Fluid Mechanics, 82 (1999), 105–123. [CrossRef] [Google Scholar]
- G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek, editors. Hemodynamical Flows - Modeling, Analysis and Simulation, vol. 37 of Oberwolfach Seminars. Birkäuser, 2008. [Google Scholar]
- A. Gambaruto, J. Janela, A. Moura, A. Sequeira. Sensitivity of hemodynamics in a patient-specific cerebral aneurysm to vascular geometry and blood geometry. Mathematical biosciences and engineering, 8 no. 2 (2011), 409–423. [Google Scholar]
- A. Gambaruto, J. Janela, A. Moura, A. Sequeira. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical biosciences and engineering, 10 no. 3 (2013), 649–665. [CrossRef] [MathSciNet] [Google Scholar]
- F.J.H. Gijsen, F.N. van de Vosse, J.D. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. Journal of Biomechanics, 32 (1999), 601–608. [Google Scholar]
- V. Girault, P.A. Raviart.Finite Element Approximation of the Navier Stokes Equations, volume 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1979. [Google Scholar]
- F. Hecht. FreeFem++ v 3.23 documentation, June 2013. http://www.freefem.org/ff++. [Google Scholar]
- J. Hron, J. Malek, S. Turek. A numerical investigation of flows of shear-thinning fluids with applications to blood rheology. International Journal for Numerical Methods in Fluids, 32 (2000), 863–879. [CrossRef] [Google Scholar]
- R.W. Kolkka, D.S. Malkus, M.G. Hansen, G.R. Ierley, R.A. Worthing. Spurt phenomena of the Johnson-Segalman fluid and related models. Journal of Non-Newtonian Fluid Mechanics, 29 (1988), 303–335. [CrossRef] [Google Scholar]
- P. Lesaint, P.A. Raviart.On a finite element method for solving the neutron transport equation. In Mathematical aspects of finite elements in partial differential equations, pages 89–123, New York, 1974. Academic Press. (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974). [Google Scholar]
- A. Leuprecht, K. Perktold. Computer simulation of non-Newtonian effects of blood flow in large arteries. Computer Methods in Biomechanics and Biomechanical Engineering, 4 (2001), 149–163. [CrossRef] [Google Scholar]
- B.Q. Li. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer Verlag, 2006. [Google Scholar]
- R.G. Owens. A new microstructure-based constitutive model for human blood. Journal of Non-Newtonian Fluid Mechanics, 140 (2006), (1–3), 57–70. [Google Scholar]
- K. Perktold, M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. Journal of Biomechanics, 3 (1998), 217–228. [Google Scholar]
- K. Perktold, G. Rappitsch. Computed simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics, 28 no. 7 (1995), 845–856. [Google Scholar]
- C. Picart, J.-M. Piau, H. Galliard, P. Carpentier. Human blood shear yield stress and its hematocrit dependence. Journal of Rheology, 42 no. 1, 1998. [CrossRef] [Google Scholar]
- M. Pires, A. Sequeira. Flows of generalized Oldroyd-B fluids in curved pipes. Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 21–43. [Google Scholar]
- I.J. Rao, K.R. Rajagopal. Some simple flows of a Johnson-Segalman fluid. Acta Mechanica, 132 (1999), 209–219. [CrossRef] [Google Scholar]
- K.D. Smith, A. Sequeira. Micro-macro simulations of a shear-thinning viscoelastic kinetic model: applications to blood flow. Applicable Analysis, 90 no. 1 (2011), 227–252. [CrossRef] [Google Scholar]
- G.B. Thurston. Viscoelasticity of human blood. Biophysical Journal, 12 (1972), 1205–1217. [Google Scholar]
- G.B. Thurston. Frequency and shear rate dependence of viscoelasticity of human blood. Biorheology, 10 (1973), 375–381. [PubMed] [Google Scholar]
- G.B. Thurston. Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology, 16 no. 3, (1979), 149–162. [PubMed] [Google Scholar]
- G.B. Thurston and N.M. Henderson. Effects of flow geometry on blood viscoelasticity. Biorheology, 43 no. 6, (2006), 729–746. [PubMed] [Google Scholar]
- K.K. Yeleswarapu, M.V. Kameneva, K.R. Rajagopal, J.F. Antaki. The flow of blood in tubes: theory and experiments. Mechanics Research Communications, 25 no. 3, (1998), 257–262. [CrossRef] [Google Scholar]
- F. Yilmaz, M.Y. Gundogdu. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Australia Rheology Journal, 20 no. 4, (2008), 197–211. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.