Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
|
|
---|---|---|
Page(s) | 142 - 166 | |
DOI | https://doi.org/10.1051/mmnp/201510107 | |
Published online | 13 February 2015 |
- F. Amyot, A. Small, H. Boukari, K. Camphausen, A. Gandjbakhche. Topology of the heterogenous nature of the extracellular matrix on stochastic modeling of tumor-induced angiogenesis. Microvasc. Res., 77 (2009), 87-95. [CrossRef] [Google Scholar]
- A.R.A. Anderson, M.A.J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60 (1998), 857-900. [Google Scholar]
- A.L. Bauer, T.L. Jackson, Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92 (2007), 3105-3121. [CrossRef] [PubMed] [Google Scholar]
- Y. Cai, K. Gulnar, H. Zhang, J. Cao, S. Xu, Q. Long. Numerical simulation of tumor-induced angiogenesis influenced by the extra-cellular matrix mechanical environment. Acta Mech. Sin., 25 (2009), 889-895. [CrossRef] [Google Scholar]
- J.P. Capp. Nouveau regard sur le cancer, pour une révolution des traitements. Ed. Belin (2012), ISBN 978-2-7011-5614-9. [Google Scholar]
- A. Chauvière, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Net. Het. Med., 2 (2007), 333-357. [Google Scholar]
- A. Chauvière, L. Preziosi. Mathematical framework to model migration of cell population in extracellular matrix. (2010) Cell Mechanics: From single-scale based models to multiscale modeling Taylor & Francis Group, Chapman & Hall/CRC, ISBN 978142009454. [Google Scholar]
- A. Das, D. Lauffenburger, H. Asada, R.D. Kamm. A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Phil. Trans. R. Soc. A, 368 (2010), 2937-2960. [Google Scholar]
- G.E. Davis, D.R. Senger. Endothelial extracellular matrix. Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res., 97 (2005), 1093-1107. [CrossRef] [PubMed] [Google Scholar]
- J.T. Daub, R.M.H. Merks. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol., 75 (2013), 1377-1399. [Google Scholar]
- L.T. Edgar, J.B. Hoying, U. Utzinger, C.J. Underwood, L. Krishnan, B.K. Baggett, S.A. Maas, J.E. Guilkey, J.A. Weiss. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng., 136 (2014), 021001. [CrossRef] [PubMed] [Google Scholar]
- L.T. Edgar, S.C. Sibole, C.J. Underwood, J.E. Guilkey, J.A. Weiss. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comp. Meth. Biomech. Biomed. Eng., 16 (2013), 790-801. [Google Scholar]
- L.T. Edgar, C.J. Underwood, J.E. Guilkey, J.B. Hoying, J.A. Weiss. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLOS ONE, 9 (2014): e85178. [Google Scholar]
- J. Folkman, C. Haudenschild. Angiogenesis in vitro. Nature, 288 (1980), 551–556. [CrossRef] [PubMed] [Google Scholar]
- H. Gerhardt. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 4 (2008): 241-246. [CrossRef] [PubMed] [Google Scholar]
- M.J. Holmes, B.D. Sleeman. A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J. Theor. Biol., 202 (2000), 95-112. [Google Scholar]
- D.E. Ingber. Can cancer be reversed by engineering the tumor microenvironment? Sem. Canc. Biol. 18 (2008), 356-364. [CrossRef] [Google Scholar]
- P. Katira, R.T. Bonnecaze, M.H. Zaman. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front. Oncol., 3 (2013), 145. [CrossRef] [PubMed] [Google Scholar]
- Y. Kim, M.A. Stolarska, H.G. Othmer. The role of the microenvironment in tumor growth and invasion. Prog. Biophys. Mol. Biol., 106 (2011), 353-379. [CrossRef] [PubMed] [Google Scholar]
- E. Kniazeva, A.J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol., 297 (2009), C179-C187. [Google Scholar]
- L.D. Landau M. Lifshitz. Theory of Elasticity. London: Pergamon, 1959. [Google Scholar]
- J.R. Lange, B. Fabry. Cell and tissue mechanics in cell migration. Exp. Cell Res., 319 (2013), 2418-2423. [CrossRef] [PubMed] [Google Scholar]
- D. Manoussaki, S.R. Lubkin, R.B. Vernon, J.D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor., 44 (1996), 271-282. [CrossRef] [PubMed] [Google Scholar]
- R.M.H. Merks, S.V. Brodsky, M.S. Goligorsky, S.A. Newman, J.A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), 44-54. [CrossRef] [PubMed] [Google Scholar]
- F. Milde, M. Bergdorf, P. Koumoutsakos. A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys. J., 95 (2008), 3146-3160. [CrossRef] [PubMed] [Google Scholar]
- J.D. Murray. On the mechanical theory of biological pattern formation with application to vasculogenesis. C.R. Biologies, 326 (2003), 239-252. [CrossRef] [PubMed] [Google Scholar]
- P. Namy, J. Ohayon, P. Tracqui. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. theor. Biol., 227 (2004), 103-120. [CrossRef] [PubMed] [Google Scholar]
- L. Narunsky, R. Oren, F. Bochner, M. Neeman. Imaging aspects of the tumor stroma with therapeutics implications., Pharm. Therap., 141 (2014), 192-208. [CrossRef] [Google Scholar]
- Z.K. Otrock, R.A.R. Mahfouz, J.A. Makarem, A.I. Shamseddine. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis., 39 (2007), 212-220. [CrossRef] [PubMed] [Google Scholar]
- M.Z. Pindera, H. Ding, Z. Chen. Convected element method for simulation of angiogenesis. J. Math. Biol., 57 (2008), 467-495. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M.J. Plank, B.D. Sleeman, P.F. Jones. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J. theor. Biol. 229 (2004), 435-454. [CrossRef] [PubMed] [Google Scholar]
- P. Roca-Cusachs, R. Sunyer, X. Trepat. Mechanical guidance of cell migration: lessons from chemotaxis. Curr. Opin. Cell Biol., 25 (2013), 543-549. [CrossRef] [PubMed] [Google Scholar]
- D.K. Schlüter, I. Ramis-Conde, M.A.J. Chaplain. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J., 103 (2012), 1141-1151. [CrossRef] [PubMed] [Google Scholar]
- M. Scianna, L. Munaron, L. Preziosi. A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Prog. Biophys. Mol. Biol., 106 (2011), 450-62. [CrossRef] [PubMed] [Google Scholar]
- M. Scianna, C.G. Bell, L. Preziosi. A review of mathematical models for the formation of vascular networks. J. theor. Biol., 333 (2013), 174-209. [Google Scholar]
- D.W. Siemann. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 37 (2011), 63-74. [CrossRef] [PubMed] [Google Scholar]
- F. Spill, P. Guerrero, T. Alarcon, P.K. Maini, H.M. Byrne. Mesoscopic and continuum modelling of angiogenesis. J. Math. Biol., (2014). [Google Scholar]
- A. Stéphanou, G. Meskaoui, B. Vailhé, P. Tracqui. The rigidity in fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation. Microvasc. Res. 73 (2007), 182-190. [CrossRef] [Google Scholar]
- A. Stéphanou, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comp. Mod., 44 (2006), 96-123. [Google Scholar]
- A. Tosin, D. Ambrosi, L. Preziosi. Mechanics and Chemotaxis in the Morphogenesis of Vascular Networks. Bull. Math. Biol., 68 (2006), 1819-1836. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- C. Valero, E. Javierre, J.M. García-Aznar, M.J. Gómez-Benito. Numerical modelling of the angiogenesis process in wound contraction. Biochem. Model. Mechanobiol., 12 (2013), 349-360. [CrossRef] [Google Scholar]
- M. van Dijk, S.A. Göransson, S. Strömblad. Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp. Cell Res., 319 (2013), 1663-1670. [CrossRef] [PubMed] [Google Scholar]
- R.S. Varga. Matrix iterative analysis. Second ed. (of 1962 Prentice Hall edition), Springer-Verlag, (2002). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.