Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Ecology
Page(s) 142 - 164
DOI https://doi.org/10.1051/mmnp/201510210
Published online 02 April 2015
  1. M. Aguiar, S. Ballesteros, B. Kooi, N. Stollenwerk. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis. Jounal of Theoretical Biology, 289 (2011), 181–196. [CrossRef] [Google Scholar]
  2. M. Aguiar, N. Stollenwerk, B. Kooi. Scaling of stochasticity in dengue hemorrhagic fever epidemics. Math. Model. Nat. Phenom., 7 (2012), 1–11. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Aguiar, N. Stollenwerk, B. Kooi. Torus bifurcations, isolas and chaotic attractors in a simple dengue fever model with ADE and temporary cross immunity. Intern. Journal of Computer Mathematics, 86 (2009), 1867–77. [CrossRef] [Google Scholar]
  4. F. Drepper, R. Engbert, N. Stollenwerk. Nonlinear time series analysis of empirical population dynamics. Ecological Modelling, 75/76 (1994), 171–181. [CrossRef] [Google Scholar]
  5. C.W. Gardiner. Handbook of stochastic methods. Springer, New York, 1985. [Google Scholar]
  6. D.T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22 (1976), 403–434. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. D.T. Gillespie. Monte Carlo simulation of random walks with residence time dependent transition probability rates. Journal of Computational Physics, 28 (1978), 395–407. [Google Scholar]
  8. J. Honerkamp. Stochastic Dynamical Systems: Concepts, Numerical Methods and Data Analysis. VCH Publishers, Heidelberg, New York, 1993. [Google Scholar]
  9. D. MacKay. (2005) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge, 2005. [Google Scholar]
  10. L. Mateus, N. Stollenwerk, J.C. Zambrini. Stochastic Models in Population Biology: From Dynamic Noise to Bayesian Description and Model Comparison for Given Data Sets. Int. Journal. Computer Math., 90 (2013), 2161–2173. [CrossRef] [Google Scholar]
  11. D.S. Sivia. Data analysis: A Bayesian tutorial. Oxford University Press, Oxford, 1996. [Google Scholar]
  12. N. Stollenwerk, M. Aguiar, S. Ballesteros, J. Boto, B. Kooi, L. Mateus. Dynamic noise, chaos and parameter estimation in population biology. Roy. Soc. Interface Focus, 2 (2012), 156–169. [CrossRef] [Google Scholar]
  13. N. Stollenwerk, K. Briggs. Master equation solution of a plant disease model. Physics Letters, A 274 (2000), 84–91. [CrossRef] [MathSciNet] [Google Scholar]
  14. N. Stollenwerk, F. Drepper, H. Siegel. Testing nonlinear stochastic models on phytoplankton biomass time series. Ecological Modelling, 144 (2001), 261–277. [CrossRef] [Google Scholar]
  15. N. Stollenwerk, V. Jansen. Population biology and criticality. Imperial College Press, London, 2011. [Google Scholar]
  16. N. Stollenwerk, S. van Noort, J. Martins, M. Aguiar, F. Hilker, A. Pinto, G. Gomes. A spatially stochastic epidemic model with partial immunization shows in mean field approximation the reinfection threshold. Journal of Biological Dynamics, 4 (2010), 634–649. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. N.G. van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam, 1992. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.