Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 212 - 231
DOI https://doi.org/10.1051/mmnp/201510316
Published online 22 June 2015
  1. I. Belykh, V. Belykh, M. Hasler. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E, 62 (5) (2000), 6332–6345. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Belykh, I. Belykh, M. Hasler. Connection graph stability method for synchronized coupled chaotic systems. Physica D., 195 (1-2) (2004), 159–187. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Belykh, V. Belykh, M. Hasler. Blinking model and synchronization in small-world networks with a time-varying coupling. Physica D., 195 (1-2) (2004), 188–206. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.N. Bocharov, V.I. Bykov. Parametric analysis of eigenvalues of matrices corresponding to linear one-route catalytic reaction mechanism. React. Kinet. Catal. Lett., 34 (1) (1987), 75–80. [CrossRef] [Google Scholar]
  5. B. Bollobas. Modern graph theory. Springer, 1998. [Google Scholar]
  6. L. Boltzmann. Lectures on gas theory. Univ. of California Press, Berkeley, CA, USA, 1964. [Google Scholar]
  7. V.K. Chandrasekar, J.H. Sheeba, B. Subash, M. Lakshmanan, J. Kurths. Adaptive coupling induced multi-stable states in complex networks. Physica D., 267 (2014), 36–48. [CrossRef] [Google Scholar]
  8. P.J. Davis. Circulant matrices. AMS Chelsea Publising, New York, 1994. [Google Scholar]
  9. N. Dmitriev, E. Dynkin.On characteristic roots of stochastic matrices. Izv. Akad. Nauk SSSR Ser. Mat., 10 (2) (1946), 167–184 [Google Scholar]
  10. K. Engelborghs, T. Luzyanina, G. Samaey. DDE-BIFTOOL v. 2.00 user manual: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium, 2001. [Google Scholar]
  11. R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics, 17 (1955), 257–278. [CrossRef] [Google Scholar]
  12. C. Gaiteri, J.E. Rubin. The interaction of intrinsic dynamics and network topology in determining network burst synchrony. Front. Comput. Neurosci., 5 (2011), 10. [CrossRef] [PubMed] [Google Scholar]
  13. G.C. Garcia, A. Lesne, C.C. Hilgetag, M-T. Hutt. Role of long cycles in excitable dynamics on graphs. Phys. Rev. E., 90 (2014), 052805. [CrossRef] [Google Scholar]
  14. P. Gong, C. van Leeuwen. Evolution to a Small-world Network with Chaotic Units. Europhys. Lett., 67 (2) (2004), 328–333. [CrossRef] [EDP Sciences] [Google Scholar]
  15. A.N. Gorban. Detailed balance in micro- and macrokinetics and micro-distinguishability of macro-processes. Results in Physics, 4 (2014), 142–147. [CrossRef] [Google Scholar]
  16. A.N. Gorban, O. Radulescu, A.Y. Zinovyev. Asymptotology of chemical reaction networks. Chem. Eng. Sci., 65 (2010), 2310–2324. [Google Scholar]
  17. A.N. Gorban, G.S. Yablonskii. Extended detailed balance for systems with irreversible reactions. Chem. Eng. Sci., 66 (2011), 5388–5399. arXiv:1101.5280. [cond-mat.stat-mech]. [CrossRef] [Google Scholar]
  18. E.M. Izhikevich. Dynamical Systems in Neuroscience. The MIT Press, 2008. [Google Scholar]
  19. N. Jarman, C. Trengove, E. Steur, I. Tyukin, C. van Leeuwen. Spatially constrained adaptive rewiring in cortical neworks creates spatially modular small world architectures. Cognitive Neurodynamics, 8 (6) (2014), 479–497. [CrossRef] [PubMed] [Google Scholar]
  20. F.I. Karpelevich. On the characteristic roots of matrices with nonnegative elements, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951) 361–383 (in Russian); [English translation in Eleven Papers Translated from Russian, American Mathematical Society Translations–Series 2, Providence, RI, 1988.] [Google Scholar]
  21. H.K. Khalil. Nonlinear Systems. Prentice Hall, 2002. [Google Scholar]
  22. J.P. LaSalle. Some extensions of Liapunov’s second method. IRE Transactions on Circuit Theory, CT-7 (1969), 520–527. [Google Scholar]
  23. T. Mäki-Marttunen, J. Aćimović, K. Ruohonen, M.-L. Linne. Structure-dynamics relationships in bursting neuronal networks revealed using a prediction framework. PLOS ONE, 8 (7) (2013), e69373. DOI: 10.1371/journal.pone.0069373. [CrossRef] [PubMed] [Google Scholar]
  24. L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., 37 (1931), 405–426. [NASA ADS] [CrossRef] [Google Scholar]
  25. A.Y. Pogromskiy. Passivity based design of synchronizing systems. Int. J. Bifurc. Chaos App. Sci. Eng., 8 (2) (1998), 295–319. [CrossRef] [Google Scholar]
  26. A.Y. Pogromskiy, N. Kuznetsov, G.A. Leonov. Pattern generation in diffusive networks: how do those brainless centipedes walk? In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, USA, 2011, 7849 – 7854. [Google Scholar]
  27. A.Y. Pogromskiy, G. Santoboni, H. Nijmeijer. Partial synchronization: from symmetry towards stability. Physica D, 172 (1-4) (2002), 65–87. [CrossRef] [Google Scholar]
  28. O. Radulescu, A.N. Gorban, A.Y. Zinovyev, A. Lilienbaum. Robust simplifications of multiscale biochemical networks. BMC Systems Biology, 2 (86) (2008). doi:10.1186/1752-0509-2-86. [Google Scholar]
  29. E. Steur, I. Tyukin, H. Nijmeijer. Semi-passivity and synchronization in diffusively coupled neural oscillators. Physica D, 238 (2009), 2119–2128. [CrossRef] [Google Scholar]
  30. R.C. Tolman. The Principles of Statistical Mechanics. Oxford University Press, London, 1938. [Google Scholar]
  31. N.G. van Kampen. Nonlinear irreversible processes. Physica, 67 (1) (1973), 1–22 [CrossRef] [MathSciNet] [Google Scholar]
  32. B. van der Pol. On relaxation oscillations. Phil. Mag., 2 (11) (1926), 978–992. [Google Scholar]
  33. R. Wegscheider. Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatshefte für Chemie / Chemical Monthly 32 (8) (1901), 849–906. [CrossRef] [Google Scholar]
  34. G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions (Series “Comprehensive Chemical Kinetics”, Volume 32). Elsevier, Amsterdam, The Netherlands, 1991. [Google Scholar]
  35. J. Yang, W.J. Bruno, W.S. Hlavacek, J. Pearson. On imposing detailed balance in complex reaction mechanisms. Biophys. J., 91 (2006), 1136–1141. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.