Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 4, 2015
Micro-nanophenomena
Page(s) 111 - 125
DOI https://doi.org/10.1051/mmnp/201510407
Published online 15 July 2015
  1. A. J. Archer, R. Evans. Relationship between local molecular field theory and density functional theory for non-uniform liquids. J. Chem. Phys., 138 (1) (2013), 014502. [CrossRef] [PubMed] [Google Scholar]
  2. J. A. Barker, D. Henderson. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys., 47 (11) (1967), 4714–4721. [CrossRef] [Google Scholar]
  3. E. S. Benilov, M. Vynnycky. Contact lines with a 180° contact angle. J. Fluid Mech., 718 (2013), 481–506. [CrossRef] [Google Scholar]
  4. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley. Wetting and spreading. Rev. Mod. Phys., 81 (2009), 739–805. [CrossRef] [Google Scholar]
  5. B. V. Derjaguin. Some results from 50 years’ research on surface forces. In Surface Forces and Surfactant Systems, volume 74 of Progress in Colloid & Polymer Science, Steinkopff, (1987), 17–30. [Google Scholar]
  6. B. V. Derjaguin, N. V. Churaev. Properties of water layers adjacent to interfaces. In Clive A. Croxton, editor, Fluid interfacial phenomena, Wiley, New York, (1986), 663–738. [Google Scholar]
  7. B. V. Derjaguin, E. Obuchov. Anomalien dünner Flüssigkeitsschichten. III. Acta Physicochim. URSS, 5 (1) (1936), 1-22. [Google Scholar]
  8. S. Dietrich, M. Napiórkowski. Analytic results for wetting transitions in the presence of van der Waals tails. Phys. Rev. A, 43 (1991), 1861–1885. [CrossRef] [PubMed] [Google Scholar]
  9. R. Evans. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys., 28 (2) (1979), 143–200. [CrossRef] [Google Scholar]
  10. R. Evans, J. R. Henderson, D. C. Hoyle, A. O. Parry, Z. A. Sabeur. Asymptotic decay of liquid structure: oscillatory liquid-vapour density profiles and the Fisher-Widom line. Mol. Phys., 80 (4) (1993), 755–775. [CrossRef] [Google Scholar]
  11. A. N. Frumkin. Über die Erscheinungen der Benetzung und des Anhaftens von Bläschen. I. Acta Physicochim. URSS, 9 (313), (1938). [Google Scholar]
  12. T. Getta, S. Dietrich. Line tension between fluid phases and a substrate. Phys. Rev. E, 57 (1) (1998), 655–671. [CrossRef] [Google Scholar]
  13. J. R. Henderson. Discussion notes: Note continuing the discussion on the contact line problem. Eur. Phys. J. Special Topics, 197 (1) (2011), 129–130. [CrossRef] [EDP Sciences] [Google Scholar]
  14. J. R. Henderson. Discussion notes on “Computer simulation of interface potentials: Towards a first principle description of complex interfaces?”, by L. G. MacDowell. Eur. Phys. J. Special Topics, 197 (1) (2011), 147–148. [CrossRef] [EDP Sciences] [Google Scholar]
  15. J. R. Henderson. Disjoining pressure of planar adsorbed films. Eur. Phys. J. Special Topics, 197 (1) (2011), 115–124. [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. R. Herring, J. R. Henderson. Simulation study of the disjoining pressure profile through a three-phase contact line. J. Chem. Phys., 132 (8) (2010) 084702. [CrossRef] [PubMed] [Google Scholar]
  17. R. Lipowsky, M. E. Fisher. Scaling regimes and functional renormalization for wetting transitions. Phys. Rev. B, 36 (4) (1987) 2126–2141. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, J. H. Snoeijer. Drops on soft solids: free energy and double transition of contact angles. J. Fluid Mech., (2014), 747, R1. [Google Scholar]
  19. L. G. MacDowell. Discussion notes on “Disjoining pressure of planar adsorbed films”, by J.R. Henderson. Eur. Phys. J. Special Topics, 197 (1) (2011), 149–150. [CrossRef] [EDP Sciences] [Google Scholar]
  20. L. G. MacDowell, J. Benet, N. A. Katcho, J. M. G. Palanco. Disjoining pressure and the film-height-dependent surface tension of thin liquid films: New insight from capillary wave fluctuations. Adv. Colloid Interface Sci., 206 (2014), 150–171. [CrossRef] [PubMed] [Google Scholar]
  21. A. Malijevský, A. O. Parry. Critical point wedge filling. Phys. Rev. Lett., 110 (16) (2012), 166101. [CrossRef] [Google Scholar]
  22. R.-J. C. Merath. Microscopic calculation of line tensions. PhD thesis, Universität Stuttgart, 2008. [Google Scholar]
  23. G. J. Merchant, J. B . Keller. Contact angles. Phys. Fluids A, 4 (3) (1992), 477–485. [CrossRef] [MathSciNet] [Google Scholar]
  24. N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137 (5A) (1965), A1441–A1443. [Google Scholar]
  25. L. V. Mikheev, J. D. Weeks. Sum rules for interface Hamiltonians. Physica A, 177 (1) (1991), 495–504. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Nold, D. N. Sibley, B. D. Goddard, S. Kalliadasis. Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory. Phys. Fluids, 26 (7) (2014) 072001. [CrossRef] [Google Scholar]
  27. A. Pereira, S. Kalliadasis. Equilibrium gas-liquid-solid contact angle from density-functional theory. J. Fluid Mech., 692 (2012), 53–77. [CrossRef] [Google Scholar]
  28. L. M. Pismen. Nonlocal diffuse interface theory of thin films and the moving contact line. Phys. Rev. E, 64 (2) (2001), 021603. [CrossRef] [Google Scholar]
  29. Y. Rosenfeld. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett., 63 (9) (1989), 980–983. [CrossRef] [PubMed] [Google Scholar]
  30. R. Roth. Fundamental measure theory for hard-sphere mixtures: a review. J. Phys.: Condens. Matter, 22 (6) (2010) 063102. [CrossRef] [Google Scholar]
  31. N. Savva, S. Kalliadasis. Two-dimensional droplet spreading over topographical substrates. Phys. Fluids, 21 (9) (2009), 092102. [CrossRef] [Google Scholar]
  32. N. Savva, S. Kalliadasis. Dynamics of moving contact lines: A comparison between slip and precursor film models. Europhys. Lett., 94 (6) (2011), 64004. [CrossRef] [Google Scholar]
  33. N. Savva, S. Kalliadasis, G. A. Pavliotis. Two-dimensional droplet spreading over random topographical substrates. Phys. Rev. Lett., 104 (8) (2010), 084501. [CrossRef] [PubMed] [Google Scholar]
  34. L. W. Schwartz. Hysteretic effects in droplet motions on heterogeneous substrates: Direct numerical simulation. Langmuir, 14 (12) (1998), 3440–3453. [CrossRef] [Google Scholar]
  35. D. N. Sibley, A. Nold, N. Savva, S. Kalliadasis. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J. Eng. Math., DOI: 10.1007/s10665-014-9702-9, 2014. [Google Scholar]
  36. J. H. Snoeijer, B. Andreotti. A microscopic view on contact angle selection. Phys. Fluids, 20 (5) (2008), 057101. [CrossRef] [Google Scholar]
  37. J. H. Snoeijer, B. Andreotti. Moving contact lines: Scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech., 45 (2013), 269–292. [CrossRef] [Google Scholar]
  38. N. L. Trefethen. Spectral Methods in MATLAB. Vol. 10, SIAM, Philadelphia, 2000. [Google Scholar]
  39. R. Vellingiri, N. Savva, S. Kalliadasis. Droplet spreading on chemically heterogeneous substrates. Phys. Rev. E, 84 (3) (2011), 036305. [CrossRef] [Google Scholar]
  40. J. Wu. Density functional theory for chemical engineering: From capillarity to soft materials. AIChE J., 52 (3) (2006), 1169–1193. [CrossRef] [Google Scholar]
  41. P. Yatsyshin, N. Savva, S. Kalliadasis. Spectral methods for the equations of classical density-functional theory: Relaxational dynamics of microscopic films. J. Chem. Phys., 136 (12) (2012), 124113. [CrossRef] [PubMed] [Google Scholar]
  42. P. Yatsyshin, N. Savva, S. Kalliadasis. Geometry-induced phase transition in fluids: Capillary prewetting. Phys. Rev. E, 87 (2) (2013), 020402(R). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.