Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 10, Number 5, 2015
Dynamics of Chemical Reaction Networks
|
|
---|---|---|
Page(s) | 1 - 5 | |
DOI | https://doi.org/10.1051/mmnp/201510501 | |
Published online | 27 August 2015 |
- M.A. Al-Radhawi, D. Angeli. Robust Lyapunov functions for complex reaction networks: An uncertain system framework. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference, IEEE, 2014, 3101–3106. [Google Scholar]
- R. Aris. Introduction to the Analysis of Chemical Reactors, Prentice Hall, Englewood Cliffs, NJ, 1965. [Google Scholar]
- R. Aris. Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal., 19 (2) (1965), 81–99. [CrossRef] [Google Scholar]
- R. Aris. Prolegomena to the rational analysis of systems of chemical reactions II. Some addenda. Arch. Ration. Mech. Anal., 27 (5) (1968), 356–364. [CrossRef] [Google Scholar]
- L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 66 (1872), 275–370. [Google Scholar]
- L. Boltzmann. Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 95 (2) (1887), 153–164. [Google Scholar]
- V.I. Bykov, A.M. Kytmanov, M.Z. Lazman. Elimination methods in polynomial computer algebra. Mathematics and its Applications, V. 448. Springer, 1998. [Google Scholar]
- C. Cercignani, M. Lampis. On the H-theorem for polyatomic gases. J. Stat. Phys., 26 (4) (1981) 795–801. [CrossRef] [Google Scholar]
- J.A. Christiansen. The elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrations. Adv. Catal. , 5 (1953), 311–353. [Google Scholar]
- G. Craciun, A. Dickenstein, A. Shiu, B. Sturmfels. Toric dynamical systems. J. Symb. Comput., 44 (11) (2009), 1551–1565. [CrossRef] [Google Scholar]
- D. Grigoriev, P.D. Milman. Nash resolution for binomial varieties as Euclidean division. A priori termination bound, polynomial complexity in essential dimension 2. Advances in Mathematics, 231 (6) (2012), 3389–3428. [CrossRef] [MathSciNet] [Google Scholar]
- M. Feinberg. Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49 (1972), 187–194. [CrossRef] [Google Scholar]
- Feinberg, M. Chemical reaction network structure and the stability of complex isothermal reactors: I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci., 42 (10) (1987), 2229–2268. [Google Scholar]
- J.W. Gibbs. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Art. Sci., 3 (1876-1878), 108–248, 343–524. [Google Scholar]
- J.W. Gibbs. Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics. Yale Bicentennial Publications. Scribner and Sons, NY, 1902. [Dover Publications Inc.; Reprint edition, 2015.] [Google Scholar]
- A.N. Gorban. Detailed balance in micro- and macrokinetics and micro-distinguishability of macro-processes. Results in Physics 4 (2014), 142–147. [CrossRef] [Google Scholar]
- A.N. Gorban, V.I. Bykov, G.S. Yablonskii. Thermodynamic function analogue for reactions proceeding without interaction of various substances. Chem. Eng. Sci., 41 (11) (1986), 2739–2745. [CrossRef] [Google Scholar]
- A.N. Gorban, I. Karlin. Invariant Manifolds for Physical and Chemical Kinetics (Lecture Notes in Physics). Springer, 2005. [Google Scholar]
- A.N. Gorban, I. Karlin. Hilbert’s 6th Problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bulletin of the American Mathematical Society, 51(2) (2014), 186–246. [Google Scholar]
- A.N. Gorban, M. Shahzad. The Michaelis–Menten–Stueckelberg Theorem. Entropy, 13 (2011) 966–1019. Corrected postprint: arXiv:1008.3296. [CrossRef] [MathSciNet] [Google Scholar]
- A.N. Gorban, G.S. Yablonskii. Extended detailed balance for systems with irreversible reactions. Chem. Eng. Sci., 66 (2011) 5388–5399. arXiv:1101.5280 [cond-mat.stat-mech]. [CrossRef] [Google Scholar]
- C.N. Hinshelwood. The Kinetics of Chemical Change. The Clarendon press, Oxford, 1940. [Google Scholar]
- F. Horn, R. Jackson. General mass action kinetics. Arch. Ration. Mech. Anal., 47 (1972), 81–116. [CrossRef] [Google Scholar]
- V.N. Kolokoltsov. Nonlinear Markov processes and kinetic equations. Cambridge Tracks in Mathematics 182, Cambridge Univ. Press, 2010. [Google Scholar]
- F.J. Krambeck. The mathematical structure of chemical kinetics in homogeneous single-phase systems. Arch. Ration. Mech. Anal., 38 (5) (1970), 317–347. [CrossRef] [Google Scholar]
- M. Lazman, G. Yablonsky. Overall Reaction Rate Equation of Single Route Catalytic Reaction, Advances in Chemical Engineering, 34 (2008), 47–102. [CrossRef] [Google Scholar]
- G.N. Lewis. A new principle of equilibrium. Proceedings of the National Academy of Sciences, 11 (1925), 179–183. [CrossRef] [PubMed] [Google Scholar]
- J.C. Maxwell. On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157 (1867), 49–88. [Google Scholar]
- S.H. Lam, D.A. Goussis. The CSP method for simplifying kinetics. International Journal of Chemical Kinetics, 26 (4) (1994), 461–486. [Google Scholar]
- H.-A. Lorentz. Über das Gleichgewicht der lebendigen Kraft unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 95 (2) (1887), 115–152. [Google Scholar]
- V. Noel, D. Grigoriev, S. Vakulenko, O. Radulescu. Tropicalization and tropical equilibration of chemical reactions. Tropical and Idempotent Mathematics and Applications, Contemporary Mathematics, 616 (2014), 261–277. [CrossRef] [Google Scholar]
- L. Onsager. Reciprocal relations in irreversible processes. I, Phys. Rev., 37 (1931), 405–426. [Google Scholar]
- G.F. Oster, A.S. Perelson. Chemical reaction dynamics. Arch. Ration. Mech. Anal., 55 (3) (1974), 230–274. [CrossRef] [Google Scholar]
- D. Ramkrishna, N.R. Amundson. Mathematics in Chemical Engineering: A 50 Year Introspection. AIChE Journal, 50 (1) (2004), 7–23. [CrossRef] [Google Scholar]
- L.A. Segel, M. Slemrod. The quasi-steady-state assumption: A case study in perturbation. SIAM Rev., 31 (1989), 446–477. [CrossRef] [MathSciNet] [Google Scholar]
- P.H. Sellers. Algebraic complexes applied to chemistry. PNAS U.S.A., 55 (4) (1966), 693–698. [CrossRef] [Google Scholar]
- N.N. Semenov. Chemical kinetics and chain reactions. The Clarendon press, Oxford, 1935. [Google Scholar]
- E.C.G. Stueckelberg. Théorème H et unitarité de S. Helv. Phys. Acta, 25 (1952), 577–580. [MathSciNet] [Google Scholar]
- G. Szederkényi, K.M. Hangos. Finding complex balanced and detailed balanced realizations of chemical reaction networks. J. Math. Chem., 49, (6) (2011), 1163–1179. [CrossRef] [MathSciNet] [Google Scholar]
- J. H. van’t Hoff. Studies in Chemical Dynamics. F. Muller & Co, Amsterdam, 1896. [A revised edition of Hoff’s “Etudes de dynamique chimique”. Revised and enlarged by E. Cohen, translated by T. Ewan.] [Google Scholar]
- A.I. Volpert, S.I. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. Nijoff, Dordrecht, The Netherlands, 1985. [Google Scholar]
- P. Waage, C. M. Guldberg. Studies concerning affinity. Forhandlinger: Videnskabs - Selskabet i Christinia (Norwegian Academy of Science and Letters), (1864), 35–45. [English translation: J. Chem. Educ., 1986, 63 (12), 1044–1047.] [Google Scholar]
- R. Wegscheider. Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatshefte für Chemie / Chemical Monthly, 32 (8) (1901), 849–906. [CrossRef] [Google Scholar]
- G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions. Elsevier, Amsterdam, The Netherlands, 1991. [Google Scholar]
- A.N. Zaikin, A.M. Zhabotinsky. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature, 225 (1970), 535–537. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.