Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 6, 2015
Nonlocal reaction-diffusion equations
Page(s) 1 - 5
Published online 02 October 2015
  1. M. Alfaro, J. Coville. Rapid travelling waves in the nonlocal Fisher equation connect two unstable states. Applied Mathematics Letters, 25 (2012), 2095-2099. [CrossRef] [Google Scholar]
  2. M. Alfaro, J. Coville, G. Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete Contin. Dyn. Syst. Ser. A. 34 (2014), 1775–1791. [Google Scholar]
  3. S. Anita. Stabilization of a predator-prey system with nonlocal terms. Math. Model. Nat. Phenom., 10 (2015), no. 6, 6–16. [CrossRef] [EDP Sciences] [Google Scholar]
  4. N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. DCDS B, 13 (2010), No. 3, 537-557. [CrossRef] [Google Scholar]
  5. A. Apreutesei, A. Ducrot, V. Volpert. Competition of species with intra-specific competition. Math. Model. Nat. Phenom., 3 (2008), No. 4, 1-27. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. N. Apreutesei, A. Ducrot, V. Volpert. Travelling waves for integro-differential equations in population dynamics. DCDS B, 11 (2009), No. 3, 541-561. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Apreutesei, V. Volpert. Properness and topological degree for nonlocal reaction-diffusion operators. Abstract and Applied Analysis, 2011, Art. ID 629692, 21 pp. [Google Scholar]
  8. N. Apreutesei, V. Volpert. Properness and topological degree for nonlocal integro-differential systems. TMNA, 43 (2014), no. 1, 215-229. [Google Scholar]
  9. O. Aydogmus. Patterns and transitions to instability in an intraspecific competition model with nonlocal diffusion and interaction. Math. Model. Nat. Phenom., 10 (2015), no. 6, 17–29. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A. Bayliss, V.A. Volpert. Patterns for competing populations with species specific nonlocal coupling. Math. Model. Nat. Phenom., 10 (2015), no. 6, 30–47. [CrossRef] [EDP Sciences] [Google Scholar]
  11. H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik. The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity, 22 (2009), no. 12, 2813–2844. [CrossRef] [Google Scholar]
  12. N. Bessonov, N. Reinberg, V. Volpert. Mathematics of Darwin’s diagram. Math. Model. Nat. Phenom., Vol. 9, No. 3, 2014, 5-25. [CrossRef] [EDP Sciences] [Google Scholar]
  13. N.F. Britton. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math., 6 (1990), 1663–1688. [CrossRef] [Google Scholar]
  14. J. Clairambault, P. Magal, V. Volpert. Cancer as evolutionary process. ESMTB Communcations, 2014, 17-20. [Google Scholar]
  15. I. Demin, V. Volpert. Existence of waves for a nonlocal reaction-diffusion equation. Math. Model. Nat. Phenom., 5 (2010), No. 5, 80-101. [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Ducrot, M. Marion, V. Volpert. Spectrum of some integro-differential operators and stability of travelling waves. Nonlinear Analysis Series A: Theory, Methods and Applications, 74 (2011), no. 13, 4455-4473. [CrossRef] [Google Scholar]
  17. M.A. Fuentes, M.O. Caceres. Stochastic path perturbation approach applied to nonlocal nonlinear equations in population dynamics. Math. Model. Nat. Phenom., 10 (2015), no. 6, 48–60. [CrossRef] [EDP Sciences] [Google Scholar]
  18. S. Genieys, N. Bessonov, V. Volpert. Mathematical model of evolutionary branching. Mathematical and computer modelling, 49 (2009), no. 11-12, 2109–2115. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Genieys, V. Volpert, P. Auger. Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Mathem. Modelling of Natural Phenomena, 1, (2006), No. 1, 63-80. [CrossRef] [EDP Sciences] [Google Scholar]
  20. S. Genieys, V. Volpert, P. Auger. Adaptive dynamics: modelling Darwin’s divergence principle. Comptes Rendus Biologies, 329 (11), 876-879 (2006). [Google Scholar]
  21. S.A. Gourley. Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272–284. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. S.A. Gourley, M.A.J. Chaplain, F.A. Davidson. Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dynamical systems, 16 (2001), no. 2, 173–192. [CrossRef] [MathSciNet] [Google Scholar]
  23. S.A. Gourley, R. Liu. An age-structured model of bird migration. Math. Model. Nat. Phenom., 10 (2015), no. 6, 61–76. [CrossRef] [EDP Sciences] [Google Scholar]
  24. I.J. Hewitt, A.A. Lacey, R. I. Todd. A mathematical model for flash sintering. Math. Model. Nat. Phenom., 10 (2015), no. 6, 77–89. [CrossRef] [EDP Sciences] [Google Scholar]
  25. N.I. Kavallaris, Y. Yan. A time discretization scheme for a nonlocal degenerate problem modelling resistance spot welding Math. Model. Nat. Phenom., 10 (2015), no. 6, 90–112. [CrossRef] [EDP Sciences] [Google Scholar]
  26. L. Kong, N. Rawal, W. Shen. Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats. Math. Model. Nat. Phenom., 10 (2015), no. 6, 113–141. [CrossRef] [EDP Sciences] [Google Scholar]
  27. A. Lorz et al. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399. [Google Scholar]
  28. G. Nadin, L. Rossi, L. Ryzhik, B. Perthame. Wave-like solutions for nonlocal reaction-diffusion equations: a toy model. Math. Model. Nat.Phenom., 8 (2013), no. 3, 33–41. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  29. B. Perthame, S. Genieys. Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. Math. Model. Nat. Phenom., 4 (2007), 135–151. [Google Scholar]
  30. F. Thomas et al. Applying ecological and evolutionary theory to cancer: a long and winding road. Evol. Appl. 6 (2013), 1-10. [CrossRef] [PubMed] [Google Scholar]
  31. B.L. Segal, V.A. Volpert, A. Bayliss. Pattern formation in a model of competing populations with nonlocal interactions. Physica D, 253 (2013), 12-22. [Google Scholar]
  32. S. Vakulenko, V. Volpert. Generalized travelling waves for perturbed monotone reaction-diffusion systems. Nonlinear Analysis. TMA, 2001 (46) 757-776. [CrossRef] [Google Scholar]
  33. V. Volpert. Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains. Birkhäuser, 2011. [Google Scholar]
  34. V. Volpert. Elliptic partial differential equations. Volume 2. Reaction-diffusion equations. Birkhäuser, 2014. [Google Scholar]
  35. V. Volpert. Branching and aggregation in self-reproducing systems. ESAIM: Proceedings and Surveys, 47 (2014), 116-129. [CrossRef] [EDP Sciences] [Google Scholar]
  36. V. Volpert. Pulses and waves for a bistable nonlocal reaction-diffusion equation. Applied Mathematics Letters, 44 (2015), 21-25. [CrossRef] [Google Scholar]
  37. V. Volpert, N. Reinberg, M. Benmir, S. Boujena. On pulse solutions of a reaction-diffusion system in population dynamics Nonlinear Analysis 120 (2015), 76-85. [CrossRef] [Google Scholar]
  38. V. Volpert, S. Petrovskii. Reaction-diffusion waves in biology. Physics of Life Reviews, 6 (2009), 267-310. [Google Scholar]
  39. V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In: “Dispersal, individual movement and spatial ecology", Eds. M. Lewis, Ph. Maini, S. Petrovskii. Springer Applied Interdisciplinary Mathematics Series, in press. [Google Scholar]
  40. V. Vougalter, V. Volpert. Existence of stationary pulses for nonlocal reaction-diffusion equations, Documenta Mathematica, 19 (2014) 1141-1153. [MathSciNet] [Google Scholar]
  41. A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994. [Google Scholar]
  42. G. Zhao, S. Ruan. The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations. Math. Model. Nat. Phenom., 10 (2015), no. 6, 142–162. [CrossRef] [EDP Sciences] [Google Scholar]
  43. P. Zwolenski. Trait evolution in two-sex populations. Math. Model. Nat. Phenom., 10 (2015), no. 6, 163–181. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.