Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
|
|
---|---|---|
Page(s) | 191 - 239 | |
DOI | https://doi.org/10.1051/mmnp/201611312 | |
Published online | 21 June 2016 |
- Takuma Akimoto, Eli Barkai. Aging generates regular motions in weakly chaotic systems. Phys. Rev. E 87 (2013) 032915. [CrossRef] [Google Scholar]
- E. Barkai. Aging in Subdiffusion Generated by a Deterministic Dynamical System. Phys. Rev. Lett. 90 (2003) 104101. [CrossRef] [PubMed] [Google Scholar]
- E. Barkai, E. Aghion, D. Kessler. From the area under the Bessel excursion to anomalous diffusion of cold atoms. Physical Review X 4 (2014) 021036. [CrossRef] [Google Scholar]
- E. Barkai, Y. C. Cheng. Aging Continuous Time Random Walks. J. of Chemical Physics 118 (2003) 6167. [CrossRef] [Google Scholar]
- E. Barkai, Y. Garini, R. Metzler. Strange Kinetics of single molecules in living cells. Physics Today, 65, (2012) 29. [Google Scholar]
- E. Barkai, I. Sokolov. Multi-point Distribution Function for the Continuous Time Random Walk. J. of Stat. Mech: Theory and Experiment (2007) P08001. [Google Scholar]
- A. Baule, R. Friedrich. A fractional diffusion equation for two-point probability distributions of a continuous-time random walk. EPL 77 (2007) 10002. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- G. Bel, E. Barkai. Weak Ergodicity Breaking in the Continuous-Time Random Walk. Phys. Rev. Lett. 94 (2005) 240602. [CrossRef] [Google Scholar]
- G.M. Berger, B. Mandelbrot. A new model for error clustering in telephone circuits. IBM Journal of Research and Development 7 (1963) 224. [CrossRef] [Google Scholar]
- S. Bianco, M. Ignaccolo, M. S. Rider, M. J. Ross, P. Winsor, P. Grigolini. Brain, music, and non-Poisson renewal processes. Phys. Rev. E 75 (2007) 061911. [CrossRef] [Google Scholar]
- P. Billingsley. Probability and Measure. John Wiley & Sons (1995). [Google Scholar]
- J. Bouchaud. Weak ergodicity breaking and aging in disordered systems. Journal de Physique I France 2 (1992) 1705-1713. [CrossRef] [EDP Sciences] [Google Scholar]
- J. P. Bouchaud, A. Georges. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep., 195, (1990) 127. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- S. Burov, R. Metzler, E. Barkai. Ageing and non-ergodicity beyond the Khinchin theorem. Proceedings of the National Academy of Sciences, 107, (2010) 13228. [CrossRef] [MathSciNet] [Google Scholar]
- A. Dechant, E. Lutz. Wiener-Khinchin Theorem for Non stationary Scale-Invariant Processes. Phys. Rev. Lett., 115 (2015) 080603. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- J. L. Doob. Renewal theory from the point of view of the theory of probability. Transactions of the American Mathematical Society, Vol. 63, (1948), 422-438. [CrossRef] [MathSciNet] [Google Scholar]
- E. B. Dynkin. Some limit theorems for sums of independent random variables with infinite mathematical expectations. Selected Translations Math. Stat. Prob 1 (1961) 417; ibid. Izv. Akad. Nauk SSSR Ser. Mat. 19 (1955) 247. [Google Scholar]
- S. Ferraro, M. Manzini, A. Masoero, E. Scalas. A random telegraph signal of Mittag-Leffler type. Physica (Amsterdam) 388A (2009) 3991. [CrossRef] [Google Scholar]
- H.C. Fogedby. Langevin equations for continuous time Lévy flights. Phys. Rev. E, 50 (1994) 1657. [CrossRef] [Google Scholar]
- C. Godrèche, J. M. Luck. Statistics of the occupation time of renewal processes. J. Stat. Phys. 104 (2001) 489-524. [CrossRef] [Google Scholar]
- C. Godrèche, S. N. Majumdar, G. Schehr. Statistics of the longest interval in renewal processes. J. Stat. Mech. (2015) P03014. [Google Scholar]
- J.-H. Jeon, E. Barkai, R. Metzler. Noisy continuous time random walks. J. Chemical Physics 139 (20130 121916. [CrossRef] [PubMed] [Google Scholar]
- Y. Jung, E. Barkai, R. J. Silbey. Lineshape theory and photon counting statistics for blinking quantum dots: a Lévy walk process. Chemical Physics 284 (2002) 181-194. [CrossRef] [Google Scholar]
- Tosio Kato. Perturbation Theory for Linear Operators. Volume 132 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1980. [Google Scholar]
- J. Klafter, M. F. Shlesinger, G. Zumofen. Beyond Brownian motion. Physics Today, 49 (1996) 33. [Google Scholar]
- N. Leibovich, E. Barkai. Aging Wiener-Khinchin Theorem. Phys. Rev. Lett., 115 (2015) 080602. [CrossRef] [Google Scholar]
- S. B. Lowen, M. C. Teich. Fractal renewal processes generate 1/f noise. Phys. Rev. E, 47 (1993) 992-1001. [CrossRef] [Google Scholar]
- F. Mainardi, R. Gorenflo, A. Vivoli. Renewal processes of Mittag Leffler and Wright Type. Fractional Calculus and Applied Analysis, 8 (2005) 7-38. [MathSciNet] [Google Scholar]
- B. Mandelbrot. Some noises with 1 /f spectrum, a bridge between direct current and white noise. IEEE Trans. Inform. Theory, IT-13 (1967) 289-298. [Google Scholar]
- C. Manzo, J. A. Torreno-Pina, P. Massignan, G. J. Lapeyre, Jr., M. Lewenstein, M. F. Garcia Parajo. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity. Phys. Rev. X 5 (2015) 011021. [Google Scholar]
- G. Margolin, E. Barkai. Non-ergodicity of a Time Series Obeying Lévy Statistics. J. Stat. Phys., 122 (2006) 137. [CrossRef] [MathSciNet] [Google Scholar]
- M. M. Meerschaert, H. P. Scheffler. Limit theorems for continuous time random walks with infinite waiting times. J. Appl. Prob., 41 (2004) 623-638. [CrossRef] [Google Scholar]
- M. M. Meerschaert, P. Straka. Inverse stable subordinators. Mathematical Modelling of Natural Phenomena, 8 (2013) 1-16. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
- M. M. Meerschaert, P. Straka. Semi-Markov approach to continuous time random walk limit processes. Annals of Probability, 42 (2014) 1699-1723. [CrossRef] [MathSciNet] [Google Scholar]
- R. Metzler, J. H. Jeon, A. G. Cherstvy, E. Barkai. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16 (2014) 24128. [CrossRef] [PubMed] [Google Scholar]
- R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics Phys. Rep., 339 (2000) 1. [NASA ADS] [CrossRef] [Google Scholar]
- A. Moinet, M. Starnini, R. Pastor-Satorras. Burstiness and Aging in Social Temporal Networks. Phys. Rev. Lett., 114 (2015) 1108701. [CrossRef] [PubMed] [Google Scholar]
- C. Monthus, J-P. Bouchaud. Models of traps and glass phenomenology J. Phys. A: Math. Gen., 29 (1996) 3847-3869. [CrossRef] [Google Scholar]
- M. Niemann, H. Kantz. Joint probability distribution and multipoint correlations of the continuous time random walk. Phys. Rev. E., 28 (2008) 051104. [Google Scholar]
- M. Niemann, H. Kantz, E. Barkai. Fluctuations of 1/f Noise and the Low-Frequency Cutoff Paradox. Phys. Rev. Lett., 110 (2013) 140603. [CrossRef] [Google Scholar]
- A. V. Oppenheim, R. W. Schafer. Discrete-Time Signal Processing. Pearson Education Limited (2013). [Google Scholar]
- M. Politi, T. Kaizoji, E. Scalas. Full Characterization of the fractional Poisson process Europhys. Lett., 96 (2011) 20004. [CrossRef] [Google Scholar]
- M. A. Rodriguez. Class of perfect 1/f noise and the low frequency cutoff paradox. Phys. Rev. E, 92 (2015) 012112. [CrossRef] [Google Scholar]
- S. Sadegh, E. Barkai, D. Krapf. 1/f noise for intermittent quantum dots exhibits non-stationarity and critical exponents New. J. of Physics, 16 (2014) 113054. [CrossRef] [Google Scholar]
- F. Sanda, S. Mukamel. Anomalous line-shapes and aging effects in two-dimensional correlation spectroscopy. J. Chem. Physics, 127, 154107 (2007). [CrossRef] [Google Scholar]
- J. H. P. Schulz, E. Barkai, R. Metzler. Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett., 110 (2013) 020602. [Google Scholar]
- F. D. Stefani, J. P. Hoogenboom, E. Barkai. Beyond quantum jumps: Blinking nano-scale light emitters. Physics Today, 62 (2009) 34. [Google Scholar]
- K. A. Takeuchi, T. Akimoto. Characteristic Sign Renewals of Kardar-Parisi-Zhang Fluctuations. [cond-mat.stat-mech] (2015) arXiv:1509.03082. [Google Scholar]
- S. Vajna, B. Tóth, J. Kertész. Modelling bursty time series. New J. Phys., 15 (2013) 103023. [CrossRef] [Google Scholar]
- A.V. Weigel, B. Simon, M.M. Tamkun, D. Krapf. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proceedings of the National Academy of Sciences, 108 (2011) 6438. [CrossRef] [Google Scholar]
- I.Y. Wong, M.L. Gardel, D.R. Reichmann, E.R. Weeks, M.T. Valentine, A.R. Bausch, D.A. Weitz. Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks. Phys. Rev. Lett., 92, (2004) 1781011. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.