Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 4, 2016
Ecology, Epidemiology and Evolution
Page(s) 1 - 4
DOI https://doi.org/10.1051/mmnp/201611401
Published online 19 July 2016
  1. M.W. Adamson, A. Y. Morozov. When can we trust our model predictions? Unearthing structural sensitivity in biological systems. Proc. R. Soc. A., 469 (2012), 20120500. [CrossRef] [Google Scholar]
  2. W. G. Alharbi, S. V. Petrovskii. The impact of fragmented habitat’s size and shape on populations with Allee effect. Math. Mod. Nat. Phen., 11 (2016), 5–16. [CrossRef] [EDP Sciences] [Google Scholar]
  3. P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sanchez, L. Sanz. Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev., 5 (2008), 79–105. [Google Scholar]
  4. R. Bravo de la Parra, M. Marva, F. Sansegundo Fast dispersal in semelparous populations. Math. Mod. Nat. Phen., 11 (2016), 121–135. [Google Scholar]
  5. H. I. Egilmez, A. Yu. Morozov. Tri-trophic plankton models revised: importance of space, food web structure and functional response parametrisation. Math. Mod. Nat. Phen., 11 (2016), 17–34. [Google Scholar]
  6. I. Hanski. Single-species spatial dynamics may contribute to long-term rarity and commonness. Ecology, 66 (1985) 335–343. [CrossRef] [Google Scholar]
  7. E.V. Grigorieva, E.N. Khailov, A. Korobeinikov. Optimal control for a SIR epidemic model with nonlinear incidence rate. Math. Mod. Nat. Phen., 11 (2016), 90–105. [Google Scholar]
  8. J.Z. Farkas, A. Yu. Morozov, E.G. Arashkevich, A. Nikishina. Revisiting the stability of spatially heterogeneous predatorprey systems under eutrophication. Bull. Math. Biol., (2015), 77 1886–1908. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. V. Hutson, S. Martinez, K. Mischaikow, G. T. Vickers. The evolution of dispersal. J. Math. Biol., 47 (2003), 6, 483–517. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995. [Google Scholar]
  11. R. Levins. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15 (1969) 237–240. [Google Scholar]
  12. M.A. Lewis, S.V. Petrovskii, J. Potts. The Mathematics Behind Biological Invasions. Interdisciplinary Applied Mathematics, Vol. 44. Springer, 2016. [CrossRef] [Google Scholar]
  13. C. Li, X. Liao. The impact of hybrid quarantine strategies and delay factor on viral prevalence in computer networks. Math. Mod. Nat. Phen., 11 (2016), 106–120. [Google Scholar]
  14. J. Maynard Smith. Models in Ecology. Cambridge Univ. Press, 1974. [Google Scholar]
  15. C. Morris, H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35 (1981), 193–213. [CrossRef] [PubMed] [Google Scholar]
  16. A. Yu. Morozov, J.C. Poggiale. From spatially explicit ecological models to mean-field dynamics: The state of the art and perspectives. Ecol. Compl., 10 (2012), 1–11. [CrossRef] [Google Scholar]
  17. A. Moussaoui, P. Auger. Effects of fast Hawk-Dove-Bully game on the dynamics of a stage-structured population. Math. Mod. Nat. Phen., 11 (2016), 136–154. [Google Scholar]
  18. S.V. Petrovskii, R.P. Blackshaw, B.-L. Li. Persistence of structured populations with and without the Allee effect under adverse environmental conditions. Bull. Math. Biol., 70 (2008), 412–437. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. S.V. Petrovskii, R.P. Blackshaw. Behaviourally structured populations persist longer under harsh environmental conditions. Ecol. Lett. 6 (2003), 455–462. [CrossRef] [Google Scholar]
  20. B. Perthame, P. E. Souganidis. Rare mutations limit of a steady state dispersal evolution model. Math. Mod. Nat. Phen., 11 (2016), 155–167. [Google Scholar]
  21. J. Ren, Y. Xu, J. Liu. Investigation of dynamics of a virus-antivirus model in complex network. Physica A, 421 (2015) 533–540. [CrossRef] [Google Scholar]
  22. O. Ronce. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst., (2007) 38:231–253. [CrossRef] [Google Scholar]
  23. G.A. ten Broeke, G.A.K. van Voorn, B.W. Kooi, J. Molenaar. Detecting tipping points in ecological models with sensitivity analysis. Math. Mod. Nat. Phen., 11 (2016), 48–73. [Google Scholar]
  24. H. Seno Mathematical modelling of metapopulation dynamics: Revisiting its meaning. Math. Mod. Nat. Phen., 11 (2016), 35–47. [Google Scholar]
  25. I. Yu. Tyukin, A.N. Gorban, T.A. Tyukina, J. Mohammed Al-Ameri, Yu. A. Korablev Fast sampling of evolving systems with periodic trajectories. Math. Mod. Nat. Phen., 11 (2016), 74–89. [Google Scholar]
  26. I. Yu. Tyukin. Adaptation in Dynamical Systems. Cambridge Univ. Press, 2011. [Google Scholar]
  27. F. Wang, Y. Zhang, C. Wang, J. Ma, S.J. Moon. Stability analysis of a SEIQV epidemic model for rapid spreading worms. Comput. Secur., 29 (2010) 410–418. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.