Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 5, 2016
Bifurcations and Pattern Formation in Biological Applications
Page(s) 103 - 118
DOI https://doi.org/10.1051/mmnp/201611507
Published online 07 December 2016
  1. N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. DCDS B, 13(3) (2010), 537–557. [CrossRef] [Google Scholar]
  2. M. Banerjee, S. Abbas. Existence and non-existence of spatial patterns in a ratio-dependent predator-prey model. Ecol. Comp., 21 (2015), 199–214. [CrossRef] [Google Scholar]
  3. M. Banerjee, S. Banerjee. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Biosci., 236 (2012), 64–76. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. M. Banerjee, S. Petrovskii. Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol., 4 (2011) 37–53. [Google Scholar]
  5. M. Banerjee, M. Sen, V. Volpert. Pattern formation in a prey-predator model with nonlocal interaction terms. In “Applied Analysis with Application in Biological and Physical Sciences”, Springer, In press, 2016. [Google Scholar]
  6. M. Banerjee, V. Volpert. Prey-predator model with a nonlocal consumption of prey. Chaos, 26 (2016), 083120. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. M. Banerjee, V. Volpert. Spatio-temporal pattern formation in Rosenzweig-Macarthur model: effect of nonlocal interactions. (under review) (2016). [Google Scholar]
  8. N. Bessonov, N. Reinberg, V. Volpert. Mathematics of Darwin’s diagram. Math. Model. Nat. Phenom., 9(3) (2014), 5–25. [Google Scholar]
  9. N. F. Britton. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math., 6 (1990) 1663–1688. [Google Scholar]
  10. S. Genieys, V. Volpert, P. Auger. Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom., 1(1) (2006) 63–80. [Google Scholar]
  11. Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag, New York 2004. [Google Scholar]
  12. H. Malchow. Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. Royal Soc. London B, 251 (1993), 103–109. [CrossRef] [Google Scholar]
  13. A. Medvinsky, S. Petrovskii, I. Tikhonova, H. Malchow, B. L. Li. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev, 44 (2002), 311–370. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. M. Merchant, W. Nagata. Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor. Pop. Biol., 80 (2011), 289–297. [CrossRef] [PubMed] [Google Scholar]
  15. S. M. Merchant, W. Nagata. Selection and stability of wave trains behind predator invasions in a model with non-local prey competition. IMA J. Appl. Math., 80 (2015), 1155–1177. [Google Scholar]
  16. J. D. Murray. Mathematical Biology II. Springer-Verlag, Heidelberg (2002). [Google Scholar]
  17. R. Nathan, E. Klein, J. J. Robledo-Arnuncio. Dispersal kernels: Review, in Dispersal Ecology and Evolution. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock, (Eds.), Oxford University Press, Oxford, UK, (2012) 187–210. [Google Scholar]
  18. A. Okubo, S. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin 2001. [CrossRef] [Google Scholar]
  19. Perko, L. Differential Equations and Dynamical Systems. Springer, New York, 2001. [Google Scholar]
  20. B. L. Segal, V. A. Volpert, A. Bayliss. Pattern formation in a model of competing populations with nonlocal interactions. Phys. D, 253 (2013) 12–23. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. A. Sherratt. Periodic traveling waves in integro-differential equations for nonlocal dispersal. SIAM J. Appl. Dyna. Sys., 13(4) (2014) 1517–1541. [CrossRef] [Google Scholar]
  22. M. C. Tanzy, V. A. Volpert, A. Bayliss, M. E. Nehrkorn. Stability and pattern formation for competing populations with asymmetric nonlocal coupling. Math. Biosci., 246 (2013), 14–26. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. V. Volpert. Elliptic Partial Differential Equations, Volume 2, Reaction-diffusion Equations. Birkhauser, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.