Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 5, 2016
Bifurcations and Pattern Formation in Biological Applications
Page(s) 158 - 174
DOI https://doi.org/10.1051/mmnp/201611510
Published online 07 December 2016
  1. N. Agudov, B. Spagnolo. Noise enhanced stability of periodically driven metastable states. Phys. Rev. E, 64 (2001), 035102(R). [Google Scholar]
  2. N. Agudov, A. V. Krichigin, D. Valenti, B. Spagnolo. Stochastic resonance in a trapping overdamped monostable system. Phys. Rev. E, 81 (2010), 051123. [Google Scholar]
  3. R. Alley, S. Anandakrishnan, P. Jung. Stochastic resonance in the North Atlantic. Paleoceanography, 16 (2001), 190–198. [Google Scholar]
  4. J. Baranyi. Comparison of Stochastic and Deterministic Concepts of Bacterial Lag. J. Theor. Biol., 192 (1998), 403–408. [PubMed] [Google Scholar]
  5. J. Baranyi, C. Pin. A Parallel Study on Bacterial Growth and Inactivation. J. Theor. Biol., 210 (2001), 327–336. [PubMed] [Google Scholar]
  6. P. Barrera, S. Ciuchi, B. Spagnolo. Generating Function for a Multiplicative Noise with Group Analysis. J. Phys. A: Math. Gen., 26 (1993), L559–L565. [CrossRef] [Google Scholar]
  7. A. D. Bazykin. Nonlinear Dynamics of Interacting Populations. World Sc. series on Nonlinear Science, Series A vol.11, Singapore, 1998. [CrossRef] [Google Scholar]
  8. R. Benzi, A. Sutera, A. Vulpiani. The mechanism of stochastic resonance. J. Phys. A: Math Gen., 14 (1981), L453–L457. [Google Scholar]
  9. R. Benzi, G. Parisi, A. Sutera, A. Vulpiani. Stochastic resonance in climatic change. Tellus, 34 (1982), 10–16. [CrossRef] [Google Scholar]
  10. O. N. Bjørnstad, J. M. Fromentin,N. C. Stenseth, J. Gjøsæter. Cycles and trends in cod populations. Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 5066–5071. [Google Scholar]
  11. O. N. Bjørnstad, B. T. Grenfell. Noisy clockwork: time series analysis of population fluctuations in animals. Science, 293 (2001), 638–643. [CrossRef] [PubMed] [Google Scholar]
  12. B. Blasius, A. Huppert, L. Stone. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 399 (1999), 354–359. [CrossRef] [PubMed] [Google Scholar]
  13. A. Bonanno. Rapporto finale della campagna oceanografica “ANCHEVA;’02”, Stretto di Sicilia ed Isola di Lampedusa, IAMC-CNR, Mazara del Vallo, 04-15 luglio 2002. [Google Scholar]
  14. G. Bonanno, D. Valenti, B. Spagnolo. Role of Noise in a Market Model with Stochastic Volatility. Eur. Phys. J. B, 53 (2006), 405–409. [Google Scholar]
  15. G. Bonanno, D. Valenti, B. Spagnolo. Mean Escape Time in a System with Stochastic Volatility. Phys. Rev. E, 75 (2007), 016106. [Google Scholar]
  16. J. H. Brown, T. G. Whitham, S. K. M. Ernest, C. A. Gehring. Complex species interactions and the dynamics of ecological systems: long-term experiments. Science, 293 (2001), 643–650. [CrossRef] [PubMed] [Google Scholar]
  17. M. Campanini, I. Pedrazzoni, S. Barbuti, P. Baldini. Behaviour of Listeria monocytogenes during the maturation of naturally and artificially contaminated salami: effect of lactic-acid bacteria starter cultures. Int. J. Food Microbiol., 20 (1993), 169–175. [CrossRef] [PubMed] [Google Scholar]
  18. A. Caruso, M. Sprovieri, A. Bonanno, R. Sprovieri. Astronomical calibration of the Serravallian-Tortonian Case Pelacani section (Sicily, Italy). In: Iaccarino S. (Ed.), Integrated stratigraphy and paleoceanography of the Mediterranean Middle Miocene. Riv. Ital. Paleont. e Strat., 108 (2002), 297–306. [Google Scholar]
  19. O. Chichigina, D. Valenti, B. Spagnolo. A Simple Noise Model with Memory for Biological Systems. Fluct. Noise Lett., 5 (2005), L243–L250. [CrossRef] [Google Scholar]
  20. M. A. Cirone, F. de Pasquale, B. Spagnolo. Nonlinear Relaxation in Population Dynamics. Fractals, 11 (2003), 217–226. [Google Scholar]
  21. S. Ciuchi, F. de Pasquale, B. Spagnolo. Nonlinear Relaxation in the presence of an Absorbing Barrier. Phys. Rev. E, 47 (1993), 3915–3926. [Google Scholar]
  22. S. Ciuchi, F. de Pasquale, B. Spagnolo. Self Regulation Mechanism of an Ecosystem in a Non-Gaussian Fluctuation Regime. Phys. Rev. E, 54 (1996), 706–716. [Google Scholar]
  23. P. Dalgaard, P. Buch, S. Silberg. Seafood Spoilage Predictor–development and distribution of a product specific application software. Int. J. Food Microbiol., 73 (2002), 343–349. [CrossRef] [PubMed] [Google Scholar]
  24. G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, C. Brunet. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecol. Complex., 13 (2013), 21–34. [CrossRef] [Google Scholar]
  25. G. Denaro, D. Valenti, B. Spagnolo, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, A. Bonanno. Dynamics of two picophytoplankton groups in Mediterranean Sea: Analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. PLoS ONE, 8 (2013), e66765. [CrossRef] [PubMed] [Google Scholar]
  26. E. J. Dens, K. M. Vereecken, J. F. Van Impe. A prototype model structure for mixed microbial populations in homogeneous food products. J. Theor. Biol., 201 (1999), 159–170. [PubMed] [Google Scholar]
  27. M. Droz, A. Pekalski. Dynamics of populations in a changing environment. Phys. Rev. E, 65 (2002), 051911. [Google Scholar]
  28. A. A. Dubkov, N. V. Agudov, B. Spagnolo. Noise enhanced stability in fluctuating metastable states. Phys. Rev. E, 69 (2004), 061103. [Google Scholar]
  29. A. A. Dubkov, B. Spagnolo. Acceleration of Diffusion in Randomly Switching Potential with Supersymmetry. Phys. Rev. E, 72 (2005), 041104. [Google Scholar]
  30. A. A. Dubkov, B. Spagnolo. Verhulst model with Lévy white noise excitation. Eur. Phys. J. B, 65 (2008), 361–367. [Google Scholar]
  31. A. Fiasconaro, D. Valenti, B. Spagnolo. Nonmonotonic Behaviour of Spatiotemporal Pattern Formation in a Noisy Lotka-Volterra System. Acta Phys. Pol. B, 35 (2004), 1491–1500. [Google Scholar]
  32. A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E. Gudowska-Nowak. Monitoring noise-resonant effects in cancer growth influenced by spontaneous fluctuations and periodic treatment. Eur. Phys. J. B, 65 (2008), 435–442. [Google Scholar]
  33. J. A. Freund, T. Pöschel (Eds.). Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics 557, Springer, Berlin, 2000. [CrossRef] [Google Scholar]
  34. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70 (1998), 223–287. [Google Scholar]
  35. J. Garcia Lafuente, A. Garcia, S. Mazzola, L. Quintanilla, J. Delgado, A. Cuttitta, B. Patti. Hydrographic phenomena influencing early life stages of the Sicilian Channel anchovy. Fish. Oceanogr., 11 (2002), 31–44. [Google Scholar]
  36. D. Gatteschi, R. Sessoli. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. Engl., 42 (2003), 268–297. [CrossRef] [PubMed] [Google Scholar]
  37. A. Giuffrida, G. Ziino, F. Rago, F. Giarratana, A. Taviano, A. Panebianco, Behaviour of Lysteria monocytogenes during the Seasoning of a Typical Sicilian Dried Salami. In Proceedings of INTRADFOOD 2005 (Innovation in Traditional Food), Valencia, Spain, 25-28 October 2005, pp. 537–540. [Google Scholar]
  38. A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, A. Panebianco. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food Res. Technol., 228 (2009), 767–775. [Google Scholar]
  39. N. Goldenfeld, L.P. Kadanoff. Simple lessons from complexity. Science, 284 (1999), 87–89. [CrossRef] [PubMed] [Google Scholar]
  40. P. Hänggi, P. Talkner, M. Borkovec. Reaction rate theory: fifty years after Kramers. Rev. Mod. Phys., 62 (1990), 251–342. [Google Scholar]
  41. E. M. Hart, L. Avilés. Reconstructing Local Population Dynamics in Noisy Metapopulations - The Role of Random Catastrophes and Allee Effects. PLoS One, 9 (2014), e110049. [CrossRef] [PubMed] [Google Scholar]
  42. N. T. Hieu, N. H. Du, P. Auger, N. H. Dang. Dynamical behavior of a stochastic SIRS epidemic model. Math. Mod. Nat. Phen., 10 (2015), 56–73. [CrossRef] [EDP Sciences] [Google Scholar]
  43. K. Higgins, A. Hastings, J. N. Sarvela, L. W. Botsford. Stochastic Dynamics and Deterministic Skeletons: Population Behavior of Dungeness Crab. Science, 276 (1997), 1431–1435. [Google Scholar]
  44. M. Hoffmann, H. H. Chang, S. Huang, D. E. Ingber, M. Loeffler, J. Galle. Noise-Driven Stem Cell and Progenitor Population Dynamics. PLoS One, 3 (2008), e2922. [CrossRef] [PubMed] [Google Scholar]
  45. P. Jung, P. Hänggi. Stochastic nonlinear dynamics modulated by external periodic forces. Europhys. Lett., 8 (1989), 505–510. [Google Scholar]
  46. P. Jung, P. Hänggi. Amplification of small signals via stochastic resonance. Phys. Rev. A, 44 (1991), 8032–8042. [CrossRef] [PubMed] [Google Scholar]
  47. Special issue CML models, edited by K. Kaneko. Chaos, 2 (1992), 279–460. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  48. A. A. King, W. M. Schaffer. The geometry of a population cycle: A mechanistic model of snowshoe hare demography. Ecology, 82 (2001), 814–830. [Google Scholar]
  49. A. La Barbera, B. Spagnolo. Spatio-Temporal Patterns in Population Dynamics. Physica A, 314 (2002), 120–124. [Google Scholar]
  50. A. La Cognata, D. Valenti, A. A. Dubkov, B. Spagnolo. Dynamics of two competing species in the presence of Lévy noise sources. Phys. Rev. E, 82 (2010), 011121. [Google Scholar]
  51. E. Lanzara, R.N. Mantegna, B. Spagnolo, R. Zangara. Experimental Study of a Nonlinear System in the Presence of Noise: The Stochastic Resonance. Am. J. Phys, 65 (1997), 341–349. [Google Scholar]
  52. M. N. Leuenberger, D. Loss. Quantum computing in molecular magnets. Nature, 410 (2001), 789–793. [CrossRef] [PubMed] [Google Scholar]
  53. A.J. Lotka. Analytical Note on Certain Rhythmic Relations in Organic Systems. Proc. Nat. Acad. Sci. U.S. A., 6 (1920), 410–415. [Google Scholar]
  54. R.N. Mantegna, B. Spagnolo. Stochastic Resonance in a Tunnel Diode. Phys. Rev. E, 49 (1994), R1792–R1795. [Google Scholar]
  55. R. N. Mantegna, B. Spagnolo. Noise Enhanced Stability in an Unstable System. Phys. Rev. Lett., 76 (1996), 563–566. [CrossRef] [PubMed] [Google Scholar]
  56. R.N. Mantegna, B. Spagnolo, M. Trapanese. Linear and Nonlinear Experimental Regimes of Stochastic Resonance. Phys. Rev. E, 63 (2001), 011101. [Google Scholar]
  57. T. A. McMeekin, J. Olley, D. A. Ratkowsky, T. Ross. Predictive microbiology: towards the interface and beyond. Int. J. Food Microbiol., 73 (2002), 395–407. [CrossRef] [PubMed] [Google Scholar]
  58. H. Naundorf, K. Sundermann, O. Kühn. Laser driven hydrogen tunneling in a dissipative environment. Chem. Phys., 240 (1999), 163–172. [Google Scholar]
  59. M. J. Nauta. Separation of uncertainty and variability in quantitative microbial risk assessment models. Int. J. Food Microbiol., 57 (2000), 9–18. [Google Scholar]
  60. D. Persano Adorno, N. Pizzolato, D. Valenti, B. Spagnolo. External Noise Effects in doped semiconductors operating under sub-THz signals. Rep. Math. Phys., 70 (2012), 171–179. [CrossRef] [Google Scholar]
  61. M. Powell, W. Schlosser, E. Ebel. Considering the complexity of microbial community dynamics in food safety risk assessment. Int. J. Food Microbiol., 90 (2004), 171–179. [CrossRef] [PubMed] [Google Scholar]
  62. A. F. Rozenfeld, E. Albano. Study of a lattice-gas model for a prey-predator system. Physica A, 266 (1999), 322–329. [Google Scholar]
  63. A. F. Rozenfeld, C. J. Tessone, E. Albano, H.S. Wio. On the influence of noise on the critical and oscillatory behavior of a predator-prey model: coherent stochastic resonance at the proper frequency of the system. Phys. Lett. A, 280 (2001), 45–52. [Google Scholar]
  64. L. Ruokolainen, A. Lindén, V. Kaitala, M. S. Fowler. Ecological and evolutionary dynamics under coloured environmental variation. Trends Ecol. Evol., 24 (2009), 555–563. [CrossRef] [PubMed] [Google Scholar]
  65. L. Ruokolainen, E. Ranta, V. Kaitala, M. S. Fowler. Community stability under different correlation structures of species environmental responses. J. Theor. Biol., 261 (2009), 379–387. [PubMed] [Google Scholar]
  66. D. F. Russel, L. A. Wilkens, F. Moss. Use of behavioural stochastic resonance by paddle fish for feeding. Nature, 402 (2000), 291–294. [Google Scholar]
  67. M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker. Catastrophic shifts in ecosystems. Nature, 413 (2001), 591–596. [CrossRef] [PubMed] [Google Scholar]
  68. See the special section on “Ecology Through Time”, Science, 293 (2001), 623–657. [CrossRef] [PubMed] [Google Scholar]
  69. B. Spagnolo, M. Cirone, A. La Barbera, F. de Pasquale. Noise Induced Effects in Population Dynamics. J Phys-Condens. Mat., 14 (2002), 2247–2255. [CrossRef] [Google Scholar]
  70. B. Spagnolo, A. La Barbera. Role of the noise on the transient Dynamics of an ecosystem of interacting species. Physica A, 315 (2002), 114–124. [Google Scholar]
  71. B. Spagnolo, A. Fiasconaro, D. Valenti. Noise Induced Phenomena in Lotka-Volterra Systems. Fluct. Noise Lett., 3 (2003), L177–L185. [CrossRef] [Google Scholar]
  72. B. Spagnolo, D. Valenti, A. Fiasconaro. Noise in Ecosystems: A Short Review. Math. Biosci. Eng., 1 (2004), 185–211. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  73. B. Spagnolo, A. A. Dubkov, N. V. Agudov. Noise Enhanced Stability. Acta Phys. Pol. B, 35 (2004), 1419–1436. [Google Scholar]
  74. B. Spagnolo, A. A. Dubkov, A. L. Pankratov, E. V. Pankratova, A. Fiasconaro, A. Ochab-Marcinek. Lifetime of metastable states and suppression of noise in Interdisciplinary Physical Models. Acta Phys. Pol. B, 38 (2007), 1925–1950. [Google Scholar]
  75. B. Spagnolo, D. Valenti. Volatility Effects on the Escape Time in Financial Market Models. Int. J. Bifurcat. Chaos, 18 (2008), 2775–2786. [Google Scholar]
  76. B. Spagnolo, S. Spezia, L. Curcio, N. Pizzolato, A. Fiasconaro, D. Valenti, P. Lo Bue, E. Peri, S. Colazza. Noise Effects in two different Biological Systems. Eur. Phys. J. B, 69 (2009), 133–146. [Google Scholar]
  77. K. Staliunas. Spatial and Temporal Noise Spectra of Spatially Extended Systems with Order-Disorder Phase Transitions. Int. J. Bifurcat. Chaos, 11 (2001), 2845–2852. [Google Scholar]
  78. I. A. M. Swinnen, K. Bernaerts, E. J. J. Dens, A. H. Geeraerd, J. F. Van Impe. Predictive modelling of the microbial lag phase: a review. Int. J. Food Microbiol., 94 (2004), 137–159. [CrossRef] [PubMed] [Google Scholar]
  79. M. Trüssel, T. Jemmi. The behaviour of Listeria monocytogenes during the ripening and storage of artificially contaminated salami and Mettwurst. Fleischwirtschaft, 69 (1989), 1586–1592. [Google Scholar]
  80. P. Turchin, L. Oksansen, P. Ekerholm, T. Oksanen, H. Henttonen. Are lemmings prey or predators? Nature, 405 (2000), 562–565. [CrossRef] [PubMed] [Google Scholar]
  81. D. Valenti, A. Fiasconaro, B. Spagnolo. Stochastic resonance and noise delayed extinction in a model of two competing species. Physica A, 331 (2004), 477–486. [Google Scholar]
  82. D. Valenti, A. Fiasconaro, B. Spagnolo. Pattern formation and spatial correlation induced by the noise in two competing species. Acta Phys. Pol. B, 35 (2004), 1481–1489. [Google Scholar]
  83. D. Valenti, B. Spagnolo, G. Bonanno. Hitting Time Distributions in Financial Markets. Physica A, 382 (2007), 311–320. [Google Scholar]
  84. D. Valenti, G. Augello, B. Spagnolo. Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise. Eur. Phys. J. B, 65 (2008), 443–451. [Google Scholar]
  85. D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino, B. Spagnolo, Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy). Ecol. Model., 213 (2008), 449–462. [CrossRef] [Google Scholar]
  86. D. Valenti, G. Denaro, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. Zgozi, S. Aronica. Picophytoplankton dynamics in noisy marine environment. Acta Phys. Pol. B, 43 (2012), 1227–1240. [CrossRef] [Google Scholar]
  87. D. Valenti, G. Denaro, D. Persano Adorno, N. Pizzolato, S. Zammito, B. Spagnolo. Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields. Cent. Eur. J. Phys. 10 (2012), 560–567. [Google Scholar]
  88. D. A. Vasseur, J. W. Fox. Environmental fluctuations can stabilize food web dynamics by increasing synchrony. Ecol. Lett., 10 (2007), 1066–1074. [PubMed] [Google Scholar]
  89. J. M. G. Vilar, R. V. Solé. Effects of Noise in Symmetric Two-Species Competition. Phys. Rev. Lett., 80 (1998), 4099–4102. [Google Scholar]
  90. V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Accad. Nazionale Lincei Ser. 6, 2 (1926), 31–113. [Google Scholar]
  91. R. C. Whiting, R. L. Buchanan. A classification of models for predictive microbiology. Food Microbiol., 10 (1993), 175–177. [Google Scholar]
  92. H. Zhonghuai, Y. Lingfa, X. Zuo, X. Houwen. Noise Induced Pattern Transition and Spatio-temporal Stochastic Resonance. Phys. Rev. Lett., 81 (1998), 2854–2857. [Google Scholar]
  93. C. Zimmer. Life after chaos. Science, 284 (1999), 83–86. See also the special section on “Complex Systems”, Science 284 (1999), 79–107. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.