Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 6, 2016
Pharmacokinetics-Pharmacodynamics
Page(s) 1 - 8
DOI https://doi.org/10.1051/mmnp/201611601
Published online 04 January 2017
  1. H.T. Banks, R. Baraldi, J. Catenacci, N. Myers. Parameter estimation using unidentified individual data in individual based models. Math. Model. Nat. Phenom., 11 (2016), no. 6, 9–27. [MathSciNet] [Google Scholar]
  2. J. Clairambault, O. Fercoq. Physiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology. Math. Model. Nat. Phenom., 11 (2016), no. 6, 45–70. [MathSciNet] [Google Scholar]
  3. A. Bouchnita, K. Bouzaachane, T. Galochkina, P. Kurbatova, P. Nony, V. Volpert. An individualized blood coagulation model to predict INR therapeutic range during warfarin treatment. Math. Model. Nat. Phenom., 11 (2016), no. 6, 28–44. [MathSciNet] [Google Scholar]
  4. A. Modepalli Susree, B. Mohan Anand. Reaction mechanisms and kinetic constants used in mechanistic models of coagulation and fibrinolysis. Math. Model. Nat. Phenom., 11 (2016), no. 6, 71–90. [MathSciNet] [Google Scholar]
  5. T.O. Shepelyuk, M.A. Panteleev, A.N. Sveshnikova. Computational modeling of quiescent platelet energy metabolism in the context of whole-body glucose turnover. Math. Model. Nat. Phenom., 11 (2016), no. 6, 91–101. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Homogeneous and Heterogeneous Approaches. Springer, (2006), 293–308. [Google Scholar]
  7. C.V. Fletcher, K. Staskus, S.W. Wietgrefe, M. Rothenberger, C. Reilly, J.G. Chipman, G.J. Beilman, A. Khoruts, A. Thorkelson, T.E. Schmidt, J. Anderson, K. Perkey, M. Stevenson, A.S. Perelson, D.C. Douek, A.T. Haase, T.W. Schacker. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A, 111 (2014), no. 6, 2307–2312. [CrossRef] [PubMed] [Google Scholar]
  8. R. Lorenzo-Redondo, H.R. Fryer, T. Bedford, E.Y. Kim, J. Archer, S.L. Kosakovsky Pond, Y.S. Chung, S. Penugonda, J.G. Chipman, C.V. Fletcher, T.W. Schacker, M.H. Malim, A. Rambaut, A.T. Haase, A.R. McLean, S.M. Wolinsky. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature, 530 (2016), no. 7588, 51–56. [CrossRef] [PubMed] [Google Scholar]
  9. Y. Fukazawa, R. Lum, A.A. Okoye, H. Park, K. Matsuda, J.Y. Bae, S.I. Hagen, R. Shoemaker, C. Deleage, C. Lucero, D. Morcock, T. Swanson, A.W. Legasse, M.K. Axthelm, J. Hesselgesser, R. Geleziunas, V.M. Hirsch, P.T. Edlefsen, M. Piatak Jr, J.D. Estes, J.D. Lifson, L.J. Picker. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med. 21 (2015), no. 2, 132–139. [CrossRef] [PubMed] [Google Scholar]
  10. A. Licht, G. Alter. A drug-free zone–lymph nodes as a safe haven for HIV. Cell Host Microbe, 19 (2016), no. 3, 275–276. [CrossRef] [PubMed] [Google Scholar]
  11. G. Bocharov, A. Danilov, Yu. Vassilevski, G.I. Marchuk, V.A. Chereshnev, B. Ludewig. Reaction-diffusion modelling of interferon distribution in secondary lymphoid organs. Math. Model. Nat. Phenom., 6 (2011), no. 7, 13–26. [CrossRef] [MathSciNet] [Google Scholar]
  12. G.A. Bocharov, A.A. Danilov, Y.V. Vassilevski, G.I. Marchuk, V.A. Chereshnev, B. Ludewig. Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration. Doklady Biological Sciences 439 (2011), no. 1, 194–196. [CrossRef] [Google Scholar]
  13. T. Junt, E. Scandella, B. Ludewig. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nature Reviews Immunology. 8 (2008), 764–775. [CrossRef] [PubMed] [Google Scholar]
  14. T. Lammermann, M. Sixt. The microanatomy of T-cell responses. Immunological Reviews, 221 (2008), 26–43. [CrossRef] [PubMed] [Google Scholar]
  15. G. Bocharov, R. Züst, L. Cervantes-Barragan, T. Luzyanina, E. Chiglintsev, V.A. Chereshnev, V. Thiel, B. Ludewig. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections. PLoS Pathogens, 6 (2010), no. 7, e1001017. [CrossRef] [PubMed] [Google Scholar]
  16. J. Keener, J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 2009. [Google Scholar]
  17. R. Savinkov, A. Kislitsyn, D.J. Watson, R. van Loon, I. Sazonov, M. Novkovic, L. Onder, G. Bocharov. Data-driven modelling of the FRC network for studying the fluid flow in the conduit system. Engineering Applications of Artificial Intelligence, 2016, http://dx.doi.org/10.1016/j.engappai.2016.10.007 [Google Scholar]
  18. M. Jafarnejad, M.C. Woodruff, D.C. Zawieja, M.C. Carroll, J.E. Jr moore. Modeling lymph flow and fluid exchange with blood vessels in lymph nodes. Lymphatic research and biology, 13 (2015), no. 4, 234–247. [Google Scholar]
  19. A. Kislitsyn, R. Savinkov, M. Novkovic, L. Onder, G. Bocharov. Computational approach to 3D modeling of the lymph node geometry. Computation, 3 (2015), 222–234. [CrossRef] [Google Scholar]
  20. L.J. Cooper, J.P. Heppell, G.F. Clough, B. Ganapathisubramani, T. Roose. An image-based model of fluid flow through lymph nodes. Bull. Math. Biol., 78 (2016), no. 1, 52–71. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. F. Billy, J. Clairambault. Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete and Continuous Dynamical Systems - Series B, 18 (2013), no. 4, 865–889. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Billy, J. Clairambault, F. Delaunay, C. Feillet, N. Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences and Engineering, 10 (2013), no. 1, 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Billy, J. Clairambault, Q. Fercoq. Optimisation of cancer drug treatments using cell population dynamics. In: A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler (eds.) Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, 265–309. Springer, New York, 2013. [CrossRef] [Google Scholar]
  24. F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito. Synchronisation and control of proliferation in cycling cell population models with age structure. Mathematics and Computers in Simulation, 96 (2014), 66–94. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Clairambault. Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation. In "Mathematical Oncology 2013”, A. d’Onofrio and A. Gandolfi Eds., Part III, 265–294, Birkh'´auser, New York, 2014. [Google Scholar]
  26. A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault, B. Perthame. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), no. 2, 377–399. [Google Scholar]
  27. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol., 77 (2015), no. 1, 1–22. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. B. Dahlback. Haematology: blood coagulation. The Lancet 355 (2000), 1627–1632. [CrossRef] [Google Scholar]
  29. L. de Pillis, E.J. Graham, K. Hood, Y. Ma, A. Radunskaya, J. Simons. Injury-initiated clot formation under flow: a mathematical model with warfarin treatment. In: Applications of Dynamical Systems in Biology and Medicine, 75–98. Springer New York, 2015. [CrossRef] [Google Scholar]
  30. E.V. Dydek, E.L. Chaikof. Simulated thrombin generation in the presence of surface-bound heparin and circulating tissue factor. Annals of Biomedical Engineering, 44 (2016), no. 4, 1072–1084. [CrossRef] [PubMed] [Google Scholar]
  31. T. Wajima, G.K. Isbister, S.B. Duffull. A comprehensive model for the humoral coagulation network in humans. Clinical Pharmacology and Therapeutics, 86 (2009), no. 3, 290–298. [CrossRef] [PubMed] [Google Scholar]
  32. R. Burghaus, K. Coboeken, T. Gaub, L. Kuepfer, A. Sensse, H.U. Siegmund, J. Lippert. Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation. PLoS One, 6 (2011), no. 4, e17626. [CrossRef] [PubMed] [Google Scholar]
  33. S.D. Bungay, P.A. Gentry, R.D. Gentry. A mathematical model of lipid-mediated thrombin generation. Mathematical Medicine and Biology, 20 (2003), no. 1, 105–129. [CrossRef] [PubMed] [Google Scholar]
  34. M.F. Hockin, K.C. Jones, S.J. Everse, K.G. Mann. A model for the stoichiometric regulation of blood coagulation. Journal of Biological Chemistry, 277 (2002), no. 21, 18322–18333. [CrossRef] [PubMed] [Google Scholar]
  35. R. Burghaus, K. Coboeken, T. Gaub, C. Niederalt, A. Sensse, H.U. Siegmund, J. Lippert. Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor. Frontiers in Physiology, 5 (2013), 417–417. [Google Scholar]
  36. X. Zhou, D.R.H. Huntjens, R.A.H.J. Gilissen. A systems pharmacology model for predicting effects of factor Xa inhibitors in healthy subjects: assessment of pharmacokinetics and binding kinetics. CPT: Pharmacometrics & Systems Pharmacology, 4 (2015), no. 11, 650–659. [CrossRef] [PubMed] [Google Scholar]
  37. Gribkova, I. V., Lipets, E. N., Rekhtina, I. G., Bernakevich, A. I., Ayusheev, D. B., Ovsepyan, R. A., … & Sinauridze, E. I. (2016). The modification of the thrombin generation test for the clinical assessment of dabigatran etexilate efficiency. Scientific Reports, 6. ISO 690 [Google Scholar]
  38. L. Cromme, H. Völler, F. Gäbler, A. Salzwedel, U. Taborski. Computer-aided dosage in oral anticoagulation therapy using phenprocoumon. H'´amostaseologie, 30 (2010), no. 4, 183–189. [Google Scholar]
  39. A. Gulati, G.K. Isbister, S.B. Duffull. Scale reduction of a systems coagulation model with an application to modeling pharmacokinetic-pharmacodynamic data. CPT: Pharmacometrics & Systems Pharmacology, 3 (2014), no. 1, 1–8. [CrossRef] [PubMed] [Google Scholar]
  40. D. Luan. Computational modeling and simulation of thrombus formation. Doctoral dissertation, Cornell University, 2009. [Google Scholar]
  41. L.D. Lynd, B.J. O’ Brien. Advances in risk-benefit evaluation using probabilistic simulation methods: an application to the prophylaxis of deep vein thrombosis. Journal of Clinical Epidemiology, 57 (2004), no. 8, 795–803. [CrossRef] [PubMed] [Google Scholar]
  42. L.A. Parunov, O.A. Fadeeva, A.N. Balandina, N.P. Soshitova, K.G. Kopylov, M.A. Kumskova, M. A. Panteleev. Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation. Journal of Thrombosis and Haemostasis, 9 (2011), no. 9, 1825–1834. [CrossRef] [PubMed] [Google Scholar]
  43. K. Brummel-Ziedins. Models for thrombin generation and risk of disease. Journal of Thrombosis and Haemostasis, 11 (2013), no. s1, 212–223. [CrossRef] [Google Scholar]
  44. A. Undas, M. Gissel, B. Kwasny-Krochin, P. Gluszko, K.G. Mann, K.E. Brummel-Ziedins. Thrombin generation in rheumatoid arthritis: dependence on plasma factor composition. Thrombosis and Haemostasis, 104 (2010), no. (2), 224–230. [CrossRef] [PubMed] [Google Scholar]
  45. L.E. Clegg, F. Mac Gabhann. Systems biology of the microvasculature. Integrative Biology, 7 (2015), no. 5, 498–512. [CrossRef] [Google Scholar]
  46. K.E. Brummel-Ziedins, C.Y. Vossen, S. Butenas, K.G. Mann, F.R. Rosendaal. Thrombin generation profiles in deep venous thrombosis. Journal of Thrombosis and Haemostasis, 3 (2015), no. 11, 2497–2505. [CrossRef] [Google Scholar]
  47. A. Bouchnita, G. Bocharov, A. Meyerhans, V. Volpert. Hybrid approach to model the spatial regulation of T cell responses. BMC Immunology, (2016) in press. [Google Scholar]
  48. B. Ludewig, J.V. Stein, J. Sharpe, L. Cervantes-Barragan, V. Thiel, G. Bocharov. A global "imaging’’ view on systems approaches in immunology. Eur J Immunol. 42 (2012), no. 12, 3116–3125. [CrossRef] [PubMed] [Google Scholar]
  49. S.R. Allerheiligen. Impact of modeling and simulation: myth or fact? Clin. Pharmacol. Ther., 96 (2014), no. 4, 413–415. [CrossRef] [PubMed] [Google Scholar]
  50. P.L. Bonate. What happened to the modeling and simulation revolution? Clin. Pharmacol. Ther., 96 (2014), no. 4, 416–417. [CrossRef] [PubMed] [Google Scholar]
  51. B.J. Druker, M. Talpaz, D.J. Resta, B. Peng, E. Buchdunger, J.M. Ford, N.B. Lydon, H. Kantarjian, R. Capdeville, S. Ohno-Jones, C.L. Sawyers. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 344 (2001), no. 14, 1031–1037. [CrossRef] [PubMed] [Google Scholar]
  52. T. Haferlach. Molecular genetic pathways as therapeutic targets in AML. In: Educational book, ASH 2008 meeting, 400–411, 2008. [Google Scholar]
  53. R.H. Chisholm, T. Lorenzi, J. Clairambault. Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochimica et Biophysica Acta, 1860 (2016), 2627–2645. [Google Scholar]
  54. B. Brutovsky, D. Horvath. Structure of intratumor heterogeneity: Is cancer hedging its bets? arXiv, 1307.0607, 2013. [Google Scholar]
  55. R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L.N. Almeida, A. Escargueil, J. Clairambault. Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation. Cancer Res., 75 (2015), no. 6, 930–939. [CrossRef] [PubMed] [Google Scholar]
  56. A. Wu, Q. Zhang, G. Lambert, Z. Khin, R.A. Gatenby, H.J. Kim, N. Pourmand, K. Bussey, P.C. W. Davies, J.C. Sturma, R.H. Austin. Ancient hot and cold genes and chemotherapy resistance emergence. Proc. Nat. Acad. Sci. USA 112 (2015), no. 33, 10467–10472. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.