Free Access
Issue
Math. Model. Nat. Phenom.
Volume 12, Number 5, 2017
Mathematical models in physiology
Page(s) 180 - 195
DOI https://doi.org/10.1051/mmnp/201712511
Published online 13 October 2017
  1. M. Benson, R. Gaskin, C. Moffatt, V. Peach, M. Mitchell, C. Faull. P-86 developing and implementing a community care pathway for the management of chronic oedema. BMJ Supportive & Palliative Care, 6 (Suppl 1):A41–A41, 2016 [EDP Sciences] [Google Scholar]
  2. T. DiSipio, S. Rye, B. Newman, S. Hayes. Incidence of unilateral arm lymphedema after breast cancer: a systematic review and meta-analysis Lancet Oncology, vol. 14, no. 6 (2013), 500-15. [CrossRef] [Google Scholar]
  3. M.B. Tobin, H.J. Lacey, L. Meyer et al. The psychological morbidity of breast cancer-related arm swelling. Psychological morbidity of lymphedema. Cancer., 72 (1993), 3248-52. [Google Scholar]
  4. P.A. Morgan, P.J. Franks, C.J. Moffatt. Health-related quality of life with lymphedema: a review of the literature. International wound journal., 2 (2005), 47–625. [CrossRef] [PubMed] [Google Scholar]
  5. P.S. Mortimer, Managing lymphoedema, Clinical and experimental dermatology, 20 (1995), 98-106. [CrossRef] [PubMed] [Google Scholar]
  6. N.B. Piller, R.G. Morgan, J.R. Casley-Smith. A double-blind, cross-over trial of O-(beta-hydroxyethyl)-rutosides (benzo-pyrones) in the treatment of lymphoedema of the arms and legs. British journal of plastic surgery; 41 (1988), 20-7. [CrossRef] [PubMed] [Google Scholar]
  7. The diagnosis and treatment of peripheral lymphedema: Consensus Document of the International Society of Lymphology. Lymphology, 46 (2013), 1-11. [Google Scholar]
  8. H. Partsch, N. Stout, I. Forner-Cordero et al. Clinical trials needed to evaluate compression therapy in breast cancer related lymphedema (BCRL). Proposals from an expert group. Int Angiol., 29 (2010), 442-53. [Google Scholar]
  9. I. Quere, E. Presles, M. Coupe et al. Prospective multicentre observational study of lymphedema therapy: POLIT study. Journal des maladies vasculaires, 39 (2014), 256-63. [CrossRef] [PubMed] [Google Scholar]
  10. C.J. Moffatt, P.J. Franks, D. Hardy et al. A preliminary randomized controlled study to determine the application frequency of a new lymphoedema bandaging system. The British journal of dermatology, 166 (2012), 624-32. [CrossRef] [PubMed] [Google Scholar]
  11. K.N. Margaris, R.A. Black. Modelling the lymphatic system: challenges and opportunities. Published online before print 11 January 2012, J. R. Soc., Interface doi: 10.1098/rsif.2011.0751. [Google Scholar]
  12. N.P. Reddy. A discrete model of the lymphatic system. PhD thesis, Texas A&M University, TX, 1974. [Google Scholar]
  13. A.J. Macdonald, K.P. Arkill, G.R. Tabor, N.G. McHale, C.P. Winlove. Modeling flow in collecting lymphatic vessels: one–dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol.; 295, H305–H313. (doi:10.1152/ajpheart.00004.2008). [CrossRef] [PubMed] [Google Scholar]
  14. N.P. Reddy, T.A. Krouskop, P.H. Newell. Computer–model of lymphatic–system. Comput. Biol. Med., 7 (1977), 181–197. (doi:10.1016/0010-4825(77)900) [CrossRef] [PubMed] [Google Scholar]
  15. C.D. Bertram, C. Macaskill, J.E. Moore. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. Trans., ASME 133, 011008, 2011 (doi:10.1115/1.4002799). [CrossRef] [Google Scholar]
  16. C.M. Quick, A.M. Venugopal, R.M. Dongaonkar, G.A. Laine, R.H. Stewart. First-order approximation for the pressure–flow relationship of spontaneously contracting lymphangions. Am. J. Physiol. Heart Circ. Physiol., 294, H2144–H2149, 2008. (doi:10.1152/ajpheart.00781.2007) [CrossRef] [PubMed] [Google Scholar]
  17. A.M. Venugopal, R.H. Stewart, G.A. Laine, R.M. Dongaonkar, C.M. Quick. Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol., 293, H1183–H1189, 2007. (doi:10.1152/ajpheart.01340.2006) [CrossRef] [PubMed] [Google Scholar]
  18. R.E. Drake, S.J. Allen, J. Katz, J.C. Gabel, G.A. Laine. Equivalent–circuit technique for lymph–flow studies. Am. J. Physiol., 251 (1986), 1090–1094. [Google Scholar]
  19. E. Rahbar, J.E.J. Moore. A model of a radially expanding and contracting lymphangion. J. Biomech., 21 (2011), 118–123. [Google Scholar]
  20. S.C. Cowin. Bone poroelasticity. Journal of Biomechanics, 32 (1999), 217–238. [CrossRef] [PubMed] [Google Scholar]
  21. E. Vicaut. Mécanismes des échanges d'eau : équations de Starling. Am. Fr. Anesth. Réanim., 15 (1996), 428–435 [in french]. [CrossRef] [Google Scholar]
  22. D.O. Bates, J.R. Levick, P.S. Mortimer. Starling pressures in the human arm and their alteration in postmastectomy oedema. Journal of Physiology, vol. 477, issue 2 (1994), 355–363. [CrossRef] [Google Scholar]
  23. D. Ambrosi. Infiltration through Deformable Porous Media. Math. Mech., ZAMM Z. Angew. Math. Mech., vol. 82, no. 2 (2002), 115–124. [CrossRef] [MathSciNet] [Google Scholar]
  24. K. Yadchi, S. Srivastava, S. Luding. On the validity of the Carman–Kozeny equation in random fibrous media II International Conference on Particle-based Methods– Fundamentals and Applications. PARTICLES, E. Oñate and D.R.J. Owen (Eds), 2011. [Google Scholar]
  25. J.I. Siddique, F.A. Landis, M.R. Mohyuddin. Dynamics of Drainage of Power-Law Liquid into a Deformable Porous Material. Open Journal of Fluid Dynamics, 4 (2014), 403-414. [CrossRef] [Google Scholar]
  26. E. Detournay, AH-D. Cheng. Fundamentals of poroelasticity, Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects. Vol. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, 113–171, 1993. [CrossRef] [EDP Sciences] [Google Scholar]
  27. J.R. Rice. Elasticy of fluid-infiltrated porous solids. revised list of references. August 2001 and April 2004) For use in Engineering Science 265, Advanced environmental geomechanics, 1998. [Google Scholar]
  28. H.F. Wang. Theory of linear poroelasticity. Princeton, NJ: Princeton Univ. Press, 2000. [Google Scholar]
  29. R.C. Nolen-Hoeksema. Modulus-porosity relations, Gassmann's equations, and the low-frequency elastic-wave response to fluids. Geophysics, vol. 65, no. 5 (2000) 1355–1363. [CrossRef] [Google Scholar]
  30. K. Wilmanski. A few remarks on Biot's model and linear acoustics of poroelastic saturated materials. http://www.mech-wilmanski.de, University of Zielona Gora (Poland) [Google Scholar]
  31. J.C. Wang. Young's modulus of porous materials. Journal of Materials Science, vol. 19, Issue 3 (1984), 801–808. [CrossRef] [EDP Sciences] [Google Scholar]
  32. Medifocus guidebook on : Lymphedema. 2012 Medifocus.com, Inc. Guide OC 030. [Google Scholar]
  33. J.A. DeLisa, B.M. Gans, N.E. Walsh. Physical Medicine and Rehabilitation: Principles and Practice, Volume 1, Lippincott Williams & Wilkins, 2005. [Google Scholar]
  34. S.G. Rockson. Acquired Lymphedema: Abnormal Fluid Clearance Engenders Tissue Remodeling. Lymphat Res Biol., vol. 12, no. 1(2014), 1-1. doi:10.1089/lrb.2014.1211. [Google Scholar]
  35. J.M. Rutkowski, C.E. Markhus, C.C. Gyenge, K. Alitalo, H. Wiig, M.A. Swartz. Dermal Collagen and Lipid Deposition Correlate with Tissue Swelling and Hydraulic Conductivity in Murine Primary Lymphedema. The American Journal of Pathology, vol. 176, no. 3 (2010), 1122-9. [CrossRef] [PubMed] [Google Scholar]
  36. G. Mosti, H. Partsch. Compression stockings with a negative pressure gradient have a more pronounced effect on venous pumping function than graduated elastic compression stockings. European Journal of Vascular and Endovascular Surgery, vol. 42, no. 2 (2011), 261–266. [CrossRef] [Google Scholar]
  37. F. Hecht. New development in FreeFem++, J. Numer. Math., vol. 20, no. 3-4 (2012), 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  38. W.L. Olszewski, P. Jain, G. Ambujam, M. Zaleska, M. Cakala, T. Gradalski. Tissue Fluid Pressure and Flow during Pneumatic Compression in Lymphedema of Lower Limbs. Lymphatic research and biology, vol. 9, no. 2, 2011. [CrossRef] [PubMed] [Google Scholar]
  39. S. Modi, A.W.B. Stanton, W.E. Svensson, A.M. Peters, P.S. Mortimer, J.R. Levick. Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J. Physiol. vol. 583, no. 1 (2007), 271–285. [CrossRef] [PubMed] [Google Scholar]
  40. W.L. Olszewski. The “third” circulation in human limbs tissue fluid, lymph and lymphatics. www.phlebologieonline.de on 2015-06-26 – IP: 134.214.22.18. Phlebologie, vol. 41, no. 6 (2012), 283-338, 297–303. [Google Scholar]
  41. WCC. Lee, M. Zhang. Using computational simulation to aid in the prediction of socket fit : A preliminary study. Medical Engineering and Physics, vol. 29, no. 8, (2007), 923–929. [CrossRef] [Google Scholar]
  42. A. Zhang, X.Q. Dai, Y. Li, JT-M. Cheung. Computational simulation of skin and sock pressure distributions. Studies in Computational Intelligence, 55 (2007), 323–333. [EDP Sciences] [Google Scholar]
  43. X. Dai, R. Liu, Y. Li, M. Zhang, Y. Kwok. Numerical simulation of skin pressure distribution applied by graduated compression stockings. Studies in Computational Intelligence, 55 (2007), 301–309. [Google Scholar]
  44. M.A. Swartz, A. Kaipainen, P.A. Netti, C. Brekken, Y. Boucher, A.J. Grodzinsky, R.K. Jain. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. Journal of Biomechanics, 32 (1999), 1297–1307. [CrossRef] [PubMed] [Google Scholar]
  45. K. Protz, K. Heyer, M. Dörler, M. Stücker, C. Hampel-Kalthoff, M. Augustin. Compression therapy: scientifc background and practical applications. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol. 12, no. 9 (2014), 794–801. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.