Free Access
Issue
Math. Model. Nat. Phenom.
Volume 12, Number 5, 2017
Mathematical models in physiology
Page(s) 180 - 195
DOI https://doi.org/10.1051/mmnp/201712511
Published online 13 October 2017
  1. M. Benson, R. Gaskin, C. Moffatt, V. Peach, M. Mitchell, C. Faull. P-86 developing and implementing a community care pathway for the management of chronic oedema. BMJ Supportive & Palliative Care, 6 (Suppl 1):A41–A41, 2016 [EDP Sciences]
  2. T. DiSipio, S. Rye, B. Newman, S. Hayes. Incidence of unilateral arm lymphedema after breast cancer: a systematic review and meta-analysis Lancet Oncology, vol. 14, no. 6 (2013), 500-15. [CrossRef]
  3. M.B. Tobin, H.J. Lacey, L. Meyer et al. The psychological morbidity of breast cancer-related arm swelling. Psychological morbidity of lymphedema. Cancer., 72 (1993), 3248-52.
  4. P.A. Morgan, P.J. Franks, C.J. Moffatt. Health-related quality of life with lymphedema: a review of the literature. International wound journal., 2 (2005), 47–625. [CrossRef] [PubMed]
  5. P.S. Mortimer, Managing lymphoedema, Clinical and experimental dermatology, 20 (1995), 98-106. [CrossRef] [PubMed]
  6. N.B. Piller, R.G. Morgan, J.R. Casley-Smith. A double-blind, cross-over trial of O-(beta-hydroxyethyl)-rutosides (benzo-pyrones) in the treatment of lymphoedema of the arms and legs. British journal of plastic surgery; 41 (1988), 20-7. [CrossRef] [PubMed]
  7. The diagnosis and treatment of peripheral lymphedema: Consensus Document of the International Society of Lymphology. Lymphology, 46 (2013), 1-11.
  8. H. Partsch, N. Stout, I. Forner-Cordero et al. Clinical trials needed to evaluate compression therapy in breast cancer related lymphedema (BCRL). Proposals from an expert group. Int Angiol., 29 (2010), 442-53.
  9. I. Quere, E. Presles, M. Coupe et al. Prospective multicentre observational study of lymphedema therapy: POLIT study. Journal des maladies vasculaires, 39 (2014), 256-63. [CrossRef] [PubMed]
  10. C.J. Moffatt, P.J. Franks, D. Hardy et al. A preliminary randomized controlled study to determine the application frequency of a new lymphoedema bandaging system. The British journal of dermatology, 166 (2012), 624-32. [CrossRef] [PubMed]
  11. K.N. Margaris, R.A. Black. Modelling the lymphatic system: challenges and opportunities. Published online before print 11 January 2012, J. R. Soc., Interface doi: 10.1098/rsif.2011.0751.
  12. N.P. Reddy. A discrete model of the lymphatic system. PhD thesis, Texas A&M University, TX, 1974.
  13. A.J. Macdonald, K.P. Arkill, G.R. Tabor, N.G. McHale, C.P. Winlove. Modeling flow in collecting lymphatic vessels: one–dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol.; 295, H305–H313. (doi:10.1152/ajpheart.00004.2008). [CrossRef]
  14. N.P. Reddy, T.A. Krouskop, P.H. Newell. Computer–model of lymphatic–system. Comput. Biol. Med., 7 (1977), 181–197. (doi:10.1016/0010-4825(77)900) [CrossRef] [PubMed]
  15. C.D. Bertram, C. Macaskill, J.E. Moore. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. Trans., ASME 133, 011008, 2011 (doi:10.1115/1.4002799). [CrossRef]
  16. C.M. Quick, A.M. Venugopal, R.M. Dongaonkar, G.A. Laine, R.H. Stewart. First-order approximation for the pressure–flow relationship of spontaneously contracting lymphangions. Am. J. Physiol. Heart Circ. Physiol., 294, H2144–H2149, 2008. (doi:10.1152/ajpheart.00781.2007) [CrossRef]
  17. A.M. Venugopal, R.H. Stewart, G.A. Laine, R.M. Dongaonkar, C.M. Quick. Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol., 293, H1183–H1189, 2007. (doi:10.1152/ajpheart.01340.2006) [CrossRef]
  18. R.E. Drake, S.J. Allen, J. Katz, J.C. Gabel, G.A. Laine. Equivalent–circuit technique for lymph–flow studies. Am. J. Physiol., 251 (1986), 1090–1094.
  19. E. Rahbar, J.E.J. Moore. A model of a radially expanding and contracting lymphangion. J. Biomech., 21 (2011), 118–123.
  20. S.C. Cowin. Bone poroelasticity. Journal of Biomechanics, 32 (1999), 217–238. [CrossRef] [PubMed]
  21. E. Vicaut. Mécanismes des échanges d'eau : équations de Starling. Am. Fr. Anesth. Réanim., 15 (1996), 428–435 [in french]. [CrossRef]
  22. D.O. Bates, J.R. Levick, P.S. Mortimer. Starling pressures in the human arm and their alteration in postmastectomy oedema. Journal of Physiology, vol. 477, issue 2 (1994), 355–363. [CrossRef]
  23. D. Ambrosi. Infiltration through Deformable Porous Media. Math. Mech., ZAMM Z. Angew. Math. Mech., vol. 82, no. 2 (2002), 115–124. [CrossRef] [MathSciNet]
  24. K. Yadchi, S. Srivastava, S. Luding. On the validity of the Carman–Kozeny equation in random fibrous media II International Conference on Particle-based Methods– Fundamentals and Applications. PARTICLES, E. Oñate and D.R.J. Owen (Eds), 2011.
  25. J.I. Siddique, F.A. Landis, M.R. Mohyuddin. Dynamics of Drainage of Power-Law Liquid into a Deformable Porous Material. Open Journal of Fluid Dynamics, 4 (2014), 403-414. [CrossRef]
  26. E. Detournay, AH-D. Cheng. Fundamentals of poroelasticity, Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects. Vol. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, 113–171, 1993. [CrossRef] [EDP Sciences]
  27. J.R. Rice. Elasticy of fluid-infiltrated porous solids. revised list of references. August 2001 and April 2004) For use in Engineering Science 265, Advanced environmental geomechanics, 1998.
  28. H.F. Wang. Theory of linear poroelasticity. Princeton, NJ: Princeton Univ. Press, 2000.
  29. R.C. Nolen-Hoeksema. Modulus-porosity relations, Gassmann's equations, and the low-frequency elastic-wave response to fluids. Geophysics, vol. 65, no. 5 (2000) 1355–1363. [CrossRef]
  30. K. Wilmanski. A few remarks on Biot's model and linear acoustics of poroelastic saturated materials. http://www.mech-wilmanski.de, University of Zielona Gora (Poland)
  31. J.C. Wang. Young's modulus of porous materials. Journal of Materials Science, vol. 19, Issue 3 (1984), 801–808. [CrossRef] [EDP Sciences]
  32. Medifocus guidebook on : Lymphedema. 2012 Medifocus.com, Inc. Guide OC 030.
  33. J.A. DeLisa, B.M. Gans, N.E. Walsh. Physical Medicine and Rehabilitation: Principles and Practice, Volume 1, Lippincott Williams & Wilkins, 2005.
  34. S.G. Rockson. Acquired Lymphedema: Abnormal Fluid Clearance Engenders Tissue Remodeling. Lymphat Res Biol., vol. 12, no. 1(2014), 1-1. doi:10.1089/lrb.2014.1211.
  35. J.M. Rutkowski, C.E. Markhus, C.C. Gyenge, K. Alitalo, H. Wiig, M.A. Swartz. Dermal Collagen and Lipid Deposition Correlate with Tissue Swelling and Hydraulic Conductivity in Murine Primary Lymphedema. The American Journal of Pathology, vol. 176, no. 3 (2010), 1122-9. [CrossRef] [PubMed]
  36. G. Mosti, H. Partsch. Compression stockings with a negative pressure gradient have a more pronounced effect on venous pumping function than graduated elastic compression stockings. European Journal of Vascular and Endovascular Surgery, vol. 42, no. 2 (2011), 261–266. [CrossRef]
  37. F. Hecht. New development in FreeFem++, J. Numer. Math., vol. 20, no. 3-4 (2012), 251–265. [CrossRef] [MathSciNet]
  38. W.L. Olszewski, P. Jain, G. Ambujam, M. Zaleska, M. Cakala, T. Gradalski. Tissue Fluid Pressure and Flow during Pneumatic Compression in Lymphedema of Lower Limbs. Lymphatic research and biology, vol. 9, no. 2, 2011. [CrossRef] [PubMed]
  39. S. Modi, A.W.B. Stanton, W.E. Svensson, A.M. Peters, P.S. Mortimer, J.R. Levick. Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J. Physiol. vol. 583, no. 1 (2007), 271–285. [CrossRef] [PubMed]
  40. W.L. Olszewski. The “third” circulation in human limbs tissue fluid, lymph and lymphatics. www.phlebologieonline.de on 2015-06-26 – IP: 134.214.22.18. Phlebologie, vol. 41, no. 6 (2012), 283-338, 297–303.
  41. WCC. Lee, M. Zhang. Using computational simulation to aid in the prediction of socket fit : A preliminary study. Medical Engineering and Physics, vol. 29, no. 8, (2007), 923–929. [CrossRef]
  42. A. Zhang, X.Q. Dai, Y. Li, JT-M. Cheung. Computational simulation of skin and sock pressure distributions. Studies in Computational Intelligence, 55 (2007), 323–333. [EDP Sciences]
  43. X. Dai, R. Liu, Y. Li, M. Zhang, Y. Kwok. Numerical simulation of skin pressure distribution applied by graduated compression stockings. Studies in Computational Intelligence, 55 (2007), 301–309.
  44. M.A. Swartz, A. Kaipainen, P.A. Netti, C. Brekken, Y. Boucher, A.J. Grodzinsky, R.K. Jain. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. Journal of Biomechanics, 32 (1999), 1297–1307. [CrossRef] [PubMed]
  45. K. Protz, K. Heyer, M. Dörler, M. Stücker, C. Hampel-Kalthoff, M. Augustin. Compression therapy: scientifc background and practical applications. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol. 12, no. 9 (2014), 794–801.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.