Free Access
Issue
Math. Model. Nat. Phenom.
Volume 12, Number 5, 2017
Mathematical models in physiology
Page(s) 208 - 239
DOI https://doi.org/10.1051/mmnp/201712513
Published online 13 October 2017
  1. S. Abboud, O. Berenfeld, D. Sadeh. Simulation of high-resolution qrs complex using a ventricular model with a fractal conduction system. effects of ischemia on high-frequency qrs potentials. Circulation research, 68 (1991), pp. 1751–1760. [CrossRef] [PubMed] [Google Scholar]
  2. R. R. Aliev, A. V. Panfilov. A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals, 7 (1996), pp. 293–301. [CrossRef] [Google Scholar]
  3. A. Azzouzi, Y. Coudière, R. Turpault, N. Zemzemi. A mathematical model of the purkinje-muscle junctions. Mathematical biosciences and engineering: MBE, 8 (2011), pp. 915–930. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. W. Beeler, H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres. The Journal of physiology, 268 (1977), p. 177. [CrossRef] [PubMed] [Google Scholar]
  5. O. Berenfeld, J. Jalife. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circulation Research, 82 (1998), pp. 1063–1077. [CrossRef] [PubMed] [Google Scholar]
  6. R. M. Bordas, K. Gillow, D. Gavaghan, B. Rodriguez, D. Kay. A bidomain model of the ventricular specialized conduction system of the heart. SIAM Journal on Applied Mathematics, 72 (2012), pp. 1618–1643. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Cerrone, S.F. Noujaim, E.G. Tolkacheva, A. Talkachou, R.O. Connell, O. Berenfeld, J. Anumonwo, S.V. Pandit, K. Vikstrom, C. Napolitano, S. G. Priori, J. Jalife, Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia, Circulation research, 101 (2007), pp. 1039–1048. [CrossRef] [PubMed] [Google Scholar]
  8. Y. Coudière, C. Pierre. Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology. Nonlinear analysis: real world applications, 7 (2006), pp. 916–935. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Dángelo, A. Quarteroni. On the coupling of 1d and 3d diffusion-reaction equations: Application to tissue perfusion problems. Mathematical Models and Methods in Applied Sciences, 18 (2008), pp. 1481–1504. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. DiFrancesco, D. Noble. Amodel of cardiac electrical activity in corporating ionic pumps and concentration changes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 307 (1985), pp. 353–398. [CrossRef] [Google Scholar]
  11. M. Ethier, Y. Bourgault. Semi-implicit time-discretization schemes for the bidomain model. SIAM Journal on Numerical Analysis, 46 (2008), pp. 2443–2468. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Fantoni, M. Kawabata, R. Massaro, F. Regoli, S. Raffa, V. Arora, J. A. Salverino-Uriarte, H. U. Klein, A. Auricchio. Right and left ventricular activation sequence in patients with heart failure and right bundle branch block: a detailed analysis using three-dimensional non-fluoroscopic electroanatomic mapping system. Journal of cardiovascular electrophysiology, 16 (2005), pp. 112–119. [CrossRef] [PubMed] [Google Scholar]
  13. M. A. Fernández, N. Zemzemi. Decoupled time-marching schemes in computational cardiac electrophysiology and ecg numerical simulation. Mathematical biosciences, 226 (2010), pp. 58–75. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1 (1961), p. 445. [CrossRef] [PubMed] [Google Scholar]
  15. M. Haissaguerre, E. Vigmond, B. Stuyvers, M. Hocini, O. Bernus. Ventricular arrhythmias and the his-purkinje system. Nature Reviews Cardiology, (2016). [Google Scholar]
  16. M. Hanslien, K. H. Karlsen, A. Tveito. On a finite difference scheme for a beeler-reuter based model of cardiac electrical activity International Journal of Numerical Analysis and Modelling, 3 (2006), pp. 395–412. [Google Scholar]
  17. J. G. Heywood, R. Rannacher. Finite-element approximation of the nonstationary navier-stokes problem. part IV: Error analysis for second-order time discretization. SIAM Journal on Numerical Analysis, 27 (1990), pp. 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Imanishi, S. Seto, S. Ichimaru, E. Nakashima, K. Yano, M. Akahoshi. Prognostic significance of incident complete left bundle branch block observed over a 40-year period. The American journal of cardiology, 98 (2006), pp. 644–648. 62 [CrossRef] [PubMed] [Google Scholar]
  19. K. Kunisch, A. Marica. Well-posedness for the mitchell-schaeffer model of the cardiac membrane SFB-Report No, 18 (2013), p. 2013. [Google Scholar]
  20. G. Lopera, W. G. Stevenson, K. Soejima, W. H. Maisel, B. Koplan, J. L. Sapp, S. D. Satti, L. M. Epstein. Identification and ablation of three types of ventricular tachycardia involving the his-purkinje system in patients with heart disease. Journal of cardiovascular electrophysiology, 15 (2004), pp. 52–58. [CrossRef] [PubMed] [Google Scholar]
  21. M. Lorange, R. M. Gulrajani. A computer heart model incorporating anisotropic propagation: I. model construction and simulation of normal activation. Journal of electrocardiology, 26 (1993), pp. 245–261. [CrossRef] [PubMed] [Google Scholar]
  22. C-H. Luo, Y. Rudy. A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circulation research, 68 (1991), pp. 1501–1526. [CrossRef] [PubMed] [Google Scholar]
  23. C-H. Luo, Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. simulations of ionic currents and concentration changes. Circulation research, 74 (1994), pp. 1071–1096. [CrossRef] [PubMed] [Google Scholar]
  24. M. E. Marsh, S. T. Ziaratgahi, R. J. Spiteri. The secrets to the success of the rush-larsen method and its generalizations. IEEE Transactions on Biomedical Engineering, 59 (2012), pp. 2506–2515. [CrossRef] [Google Scholar]
  25. C. C. Mitchell, D. G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bulletin of mathematical biology, 65 (2003), pp. 767–793. [CrossRef] [PubMed] [Google Scholar]
  26. J. Nagumo, S. Arimoto, S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50 (1962), pp. 2061–2070. [CrossRef] [Google Scholar]
  27. H.-X. Niu, W. Hua, S. Zhang, X. Sun, F. -Z. Wang, K.-P. Chen, H. Wang, X. Chen. Assessment of cardiac function and synchronicity in subjects with isolated bundle branch block using doppler imaging. Chinese medical journal, 119 (2006), pp. 795–800. [PubMed] [Google Scholar]
  28. D. Noble. A modification of the hodgkin-huxley equations applicable to purkinje fibre action and pacemaker potentials. The Journal of Physiology, 160 (1962), p. 317. [CrossRef] [PubMed] [Google Scholar]
  29. D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti, P. Zunino A Mixed Finite Element Method for Modeling the Fluid Exchange Between Microcirculation and Tissue Interstitium. Advances in Discretization Methods. Springer International Publishing, 2016. 3–25. [CrossRef] [Google Scholar]
  30. M. Perego, A. Veneziani. An efficient generalization of the rush-larsen method for solving electro-physiology membrane equations. Electronic Transactions on Numerical Analysis, 35 (2009), pp. 234–256. [MathSciNet] [Google Scholar]
  31. J.M. Rogers, A.D. McCulloch. A collocation-galerkin finite element model of cardiac action potential propagation. IEEE Transactions on Biomedical Engineering, 41 (1994), pp. 743–757. [CrossRef] [PubMed] [Google Scholar]
  32. K. Simelius, J. Nenonen, M. Horacek. Modeling cardiac ventricular activation. International Journal of Bioelectromagnetism, 3 (2001), pp. 51–58. [Google Scholar]
  33. J. Smoller, Shock waves and reaction-diffusion equations. vol. 258, Springer Science & Business Media, 2012 [Google Scholar]
  34. K. Ten Tusscher, D. Noble, P.-J. Noble, A. V. Panfilov. A model for human ventricular tissue. American Journal of Physiology Heart and Circulatory Physiology, 286 (2004), pp. H1573–H1589. [Google Scholar]
  35. K. Ten Tusscher, A. V. Panfilov. Modelling of the ventricular conduction system. Progress in biophysics and molecular biology, 96 (2008), pp. 152–170. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. V. Thomeé. Galerkin finite element methods for parabolic problems. Second edition, Springer Series in Computational Mmathematics, 25 (2006). [Google Scholar]
  37. E. J. Vigmond, C. Clements. Construction of a computer model to investigate sawtooth effects in the purkinje system. Biomedical Engineering, IEEE Transactions on, 54 (2007), pp. 389–399. [CrossRef] [Google Scholar]
  38. L. Wolff, J. Parkinson, P. White. Bundle-branch block with short p-r interval in healthy young people prone to paroxysmal tachycardia. Annals of noninvasive electrocardiology, 11 (2006), pp. 340–353. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.