Free Access
Math. Model. Nat. Phenom.
Volume 12, Number 6, 2017
Special Issue - Nonlocal and delay equations
Page(s) 171 - 191
Published online 30 December 2017
  1. S.V. Ambudkar, Z.E. Sauna, M.M. Gottesman and G. Szakacs, A novel way to spread drug resistance in tumor cells: functional inter cellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol. Sci. 26 (2005) 385–387. [Google Scholar]
  2. B. Aylaj and A. Noussair, Convergence of numerical schemes to a nonlinear kinetic model of population dynamics with nonlocal boundary conditions. SIAM J. Numer. Anal. Soc. Ind. Appl. Math. 48 (2010) 1707–1732. [CrossRef] [Google Scholar]
  3. N. Bellomo, Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Springer Science and Business Media, Basel (2008). [Google Scholar]
  4. N. Bellomo, N. Li and P. Maini, On the foundations of cancer modelling selected topics, speculations, and perspectives. Math. Models Meth. Appl. Sci. 18 (2008) 593–646. [CrossRef] [Google Scholar]
  5. A. Bellouquid and M. Delitala, Mathematical Modeling of Complex Biological Systems: A Kinetic Theory Approach. Birkhäuser, Boston, Basel, Berlin (2006). [Google Scholar]
  6. B. Dale, G.P. McNerney, D.L. Thompson, W. Hübner, T. Huser, B.K. Chen, Visualizing cell-to-cell transfer of HIV using fluorescent clones of HIV and live confocal microscopy. J. Vis. Exp. 44 (2010) 2061–2061. [Google Scholar]
  7. D.M. Davis, T. Igakura, F.E. McCann, L.M. Carlin, K. Andersson, B. Vanherberghen et al., The protean immune cell synapse: a supramolecular structure with many functions. Semin. Immunol. 15 (2003) 317–324. [Google Scholar]
  8. M.E. Dudley and S.A. Rosenberg, Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3 (2002) 666–675. [Google Scholar]
  9. M.E. Dudley, J.R. Wunderlich, J.C. Yang, R.M. Sherry, S.L. Topalian, N.P. Restifo et al., Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23 (2005) 2346–2357. [CrossRef] [PubMed] [Google Scholar]
  10. C. Hansen, E. Angot, A.L. Bergstrom, J.A. Steiner, L. Pieri, G. Paul et al., α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121 (2011) 715–725. [CrossRef] [PubMed] [Google Scholar]
  11. A. Levchenko, B.M. Mehta, X. Niu, G. Kang, L. Villafania, D. Way et al., Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc. Natl. Acad. Sci. USA 102 (2005) 1933–1938. [CrossRef] [Google Scholar]
  12. R.H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York (1976). [Google Scholar]
  13. A.S. Novozhilov, G.P. Karev and E. Koonin, Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22 (2005) 1721–1732. [CrossRef] [PubMed] [Google Scholar]
  14. Y. Suhail, Kshitiz, J. Lee, M. Walker, M.D. Brennan, J.S. Bader et al., Modeling intercellular transfer of biomolecules through tunneling nanotubes. Bull. Math. Biol. 75 (2013) 1400–1416. [Google Scholar]
  15. C. Villani, A review of mathematical topics in collisional kinetic theory, in Vol. 1 of Handbook of Mathematical Fluid Dynamics, edited by S. Friedlander and D. Serre. North-Holland, Amsterdam (2002) 71–305. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.