Issue
Math. Model. Nat. Phenom.
Volume 14, Number 1, 2019
Economics and the environment: distributed optimal control models
Article Number 102
Number of page(s) 31
DOI https://doi.org/10.1051/mmnp/2019003
Published online 26 March 2019
  1. H. d’Albis, E. Augeraud-Véron and H.J. Hupkes, Discontinuous initial value problems for functional differential-algebraic equations of mixed-type. J. Differ. Equ. 253 (2012) 1959–2024. [CrossRef] [Google Scholar]
  2. H. d’Albis , E. Augeraud-Véron and H.J. Hupkes, Multiple solutions in systems of functional differential equations. J. Math. Econ. 52 (2014) 50–56. [CrossRef] [Google Scholar]
  3. W. Arendt and A. Favini, Integrated solutions to implicit differential equations, partial differential equations. I (Turin, 1993). Rend. Sem. Mat. Univ. Politec. Torino 51 (1993) 315–329. [Google Scholar]
  4. J. Benhabib and R.E.A. Farmer, Indeterminacy and increasing returns. J. Econ. Theory 63 (1994) 19–41. [CrossRef] [Google Scholar]
  5. R. Bennett and R.E.A. Farmer, Indeterminacy with non-separable utility. J. Econ. Theory 93 (2000) 118–143. [CrossRef] [Google Scholar]
  6. O.J. Blanchard and C.M. Kahn, The solution of linear difference model under rational expectations. Econometrica 48 (1980) 1305–1312. [CrossRef] [Google Scholar]
  7. S. Bosi and T. Seegmuller, Can heterogeneous preferences stabilize endogenous fluctuations? J. Econ. Dyn. Control 32 (2008) 624–647. [CrossRef] [Google Scholar]
  8. R. Boucekkine, C. Carmacho and B. Zou, Bridging the gap between growth theory and economic geography: the spatial Ramsey model. Macroecon. Dyn. 13 (2009) 20–45. [CrossRef] [Google Scholar]
  9. R. Boucekkine, C. Carmacho and G. Fabbri, Spatial dynamics and convergence: the spatial AK model. J. Econ. Theory 148 (2013) 2719–2736. [CrossRef] [Google Scholar]
  10. P. Brito, A spatial Solow model with unbounded growth. Working Papers, Department of Economics, ISEG (2004). [Google Scholar]
  11. P. Brito, The dynamics of distribution in a spatially heterogeneous world. Working Papers, Department of Economics, ISEG (2004). [Google Scholar]
  12. W.A. Brock and A. Xepapadeas, Pattern formation, spatial externalities and regulation in coupled economic-ecological systems. J. Environ. Econ. Manag. 59 (2008) 149–164. [CrossRef] [Google Scholar]
  13. W.A. Brock and A. Xepapadeas, General pattern formation in recursive dynamical systems models in economics. Fondazione Eni Enrio Mattei Working Paper 49 (2009). [Google Scholar]
  14. W.H. Buiter, Saddlepoint problems in continuous time rational expectations models: a general method and some macroeconomic examples. Econometrica 52 (1984) 665–680. [CrossRef] [Google Scholar]
  15. C. Camacho and B. Zou, The spatial Solow model. Econ. Bull. 18 (2004) 1–11. [Google Scholar]
  16. L. Chincarini and N. Asherie, An analytical model for the formation of economic clusters. Regl. Sci. Urban Econ. 38 (2008) 252–270. [CrossRef] [Google Scholar]
  17. W.A. Coppel, Dichotomies in stability theory. Lecture Notes in Math. Springer-Verlag, Berlin (1978). [Google Scholar]
  18. K. Desmet and E. Rossi-Hansberg, Spatial growth and industry age. J. Econ. Theory 144 (2009) 2477–2502. [CrossRef] [Google Scholar]
  19. K. Desmet and E. Rossi-Hansberg, On spatial dynamics. J. Regl. Sci. 50 (2010) 43–63. [CrossRef] [Google Scholar]
  20. A. Ducrot, P. Magal and O. Seydi, Persistence of exponential trichotomy for linear operators: a Lyapunov-Perron approach. J. Dyn. Differ. Equ. 28 (2016) 93–126. [CrossRef] [Google Scholar]
  21. W. Easterly and R. Levine, It’s not factor accumulation: stylized facts and growth models. World Bank Econ. Rev. 15 (2001) 177–219. [CrossRef] [Google Scholar]
  22. C. Erturand W. Koch, Growth, technological interdependence and spatial externalities: theory and evidence. J. Appl. Econometr. 22 (2007) 1033–1062. [CrossRef] [Google Scholar]
  23. G. Fabbri, Geographical structure and convergence: a note on geometry in spatial growth models. J. Econ. Theory 162 (2016) 114–136. [CrossRef] [Google Scholar]
  24. M. Fugita, P. Krugman and A. Venables, The Spatial Economy. The MIT Press, Cambridge, MA (1999). [CrossRef] [Google Scholar]
  25. X. Gabais, Zipf’s law for cities: an explanation. Quar. J. Econ. 114 (1999) 739–767. [CrossRef] [Google Scholar]
  26. X. Gabais, Zipf’s law and the growth of cities. Am. Econ. Rev. 89 (1999) 129–132. [CrossRef] [Google Scholar]
  27. C. Ghiglino and M. Olszak-Duquenne, On the impact of heterogeneity on indeterminacy. Int. Econ. Rev. 46 (2005) 171–188. [CrossRef] [Google Scholar]
  28. B. Herrendorf, R. Waldemann and A. Valentiny, Ruling out multiplicity and indeterminacy: the role of heterogeneity. Rev. Econ. Stud. 67 (2000) 295–307. [CrossRef] [Google Scholar]
  29. H.J. Hupkes and E. Augeraud-Véron, Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Disc. Contin. Dyn. Syst. A 30 (2011) 737–765. [CrossRef] [Google Scholar]
  30. W. Keller, Geographic localization of international technology diffusion. Am. Econ. Rev. 92 (2002) 120–142. [CrossRef] [Google Scholar]
  31. P.J. Klenow and A. Rodriguez-Clare, Externalities and growth, in Handbook of Economic Growth, edited by P. Aghion, S. Durlauf. Elsevier, Amsterdam (2005) 817–861. [CrossRef] [Google Scholar]
  32. P. Krugman, The Self-Organizing Economy. Blackwell Publishers, Cambridge, MA (1996). [Google Scholar]
  33. L.H. Loomis and S. Sternberg, Advanced calculus. Addison–Wesley, Reading, Massachusetts (1968). [Google Scholar]
  34. R.E. Lucas Jr., Externalities and cities. Rev. Econ. Dyn. 4 (2001) 245–274. [CrossRef] [Google Scholar]
  35. H.M. Polemarchakis, Portfolio choices, exchange rates, and indeterminacy. J. Econ. Theory 46 (1988) 414–421. [CrossRef] [Google Scholar]
  36. D.T. Quah, Regional convergence clusters across Europe. Eur. Econ. Rev. 40 (1996) 951–958. [CrossRef] [Google Scholar]
  37. D.T. Quah, Spatial agglomeration dynamics. AEA Papers Proc. 92 (2002) 247–252. [Google Scholar]
  38. S.J. Rey and B.D. Montouri, U.S. regional income convergence: a spatial econometric perspective. Regl. Stud. 33 (1999) 145–156. [Google Scholar]
  39. A. Talbot, The number of zeros of a polynomial in a half-plane. Proc. Camb. Philos. Soc. 56 (1960) 132–147. [CrossRef] [Google Scholar]
  40. M.C. Zhou and Y.F. Yang, An application of traveling wave analysis in economic growth model. Appl. Math. Comput. 200 (2008) 261–266. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.