Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 41
Number of page(s) 27
Published online 22 September 2020
  1. E. Bonetti and G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. Henri Poincaré 25 (2008) 1187–1208. [CrossRef] [Google Scholar]
  2. E. Bonetti and G. Schimperna, Local existence for Frémond’s model of damage in elastic materials. Continuum Mech. Therm. 16 (2004) 319–335. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Bonetti, G. Schimperna and A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Diff. Equ. 218 (2005) 91–116. [CrossRef] [Google Scholar]
  4. S. Bosia, M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue and phase in a oscillating plate. Physica B 435 (2014) 1–3. [CrossRef] [Google Scholar]
  5. M. Brokate, C. Carstensen and J. Valdman, A quasi-static boundary value problem in multi-surface elastoplasticity. I. Analysis. Math. Methods Appl. Sci. 27 (2004) 1697–1710. [Google Scholar]
  6. M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity. Euro. J. Mech. A/Solids 15 (1996) 705–735. [Google Scholar]
  7. M. Brokate and A.M. Khludnev, Existence of solutions in the Prandtl-Reuss theory of elastoplastic plates. Adv. Math. Sci. Appl. 10 (2000) 399–415. [Google Scholar]
  8. E. Davoli, T. Roubíček and U. Stefanelli, Dynamic perfect plasticity and damage in viscoelastic solids. Z. Angew. Math. Mech. 99 (2019) 1–27. [Google Scholar]
  9. M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading. Physica B 407 (2012) 1415–1416. [CrossRef] [Google Scholar]
  10. M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate. Discrete Cont. Dynam. Syst. Ser. S 6 (2013) 909–923. [CrossRef] [Google Scholar]
  11. M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam. Comm. Pure Appl. Anal. 12 (2013) 2973–2996. [CrossRef] [Google Scholar]
  12. M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete Cont. Dyn. Syst., Ser. B 19 (2014) 2091–2109. [Google Scholar]
  13. M. Eleuteri, J. Kopfová and P. Krejčí, A new phase field model for material fatigue in oscillating elastoplastic beam. Discrete Cont. Dyn. Syst., Ser. A 35 (2015) 2465–2495. [CrossRef] [Google Scholar]
  14. M. Eleuteri and J. Kopfová, On a new model for fatigue and phase transition in an oscillating elastoplastic plate. J. Diff. Equ. 265 (2018) 1839–1874. [CrossRef] [Google Scholar]
  15. A. Flatten, Lokale und nicht-lokale Modellierung und Simulation thermomechanischer Lokalisierung mit Schädigung für metallische Werkstoffe unter Hochgeschwindigkeitsbeanspruchungen. BAM-Dissertationsreihe, Berlin (2008). [Google Scholar]
  16. M. Frémond and A. Visintin, Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301 (1985) 1265–1268. [Google Scholar]
  17. G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183–236. [Google Scholar]
  18. D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. (M3AS) 23 (2013) 565–616. [CrossRef] [Google Scholar]
  19. P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Intern. Ser. Math. Sci. Appl. 8 (1996). [Google Scholar]
  20. P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Math. Methods Appl. Sci. 30 (2007) 2371–2393. [Google Scholar]
  21. M. Kuczma, P. Litewka, J. Rakowski and J.R. Whiteman, A variational inequality approach to an elastoplastic plate-foundation system. Found Civil Environ. Eng. 5 (2004) 31–48. [Google Scholar]
  22. M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Gamma convergence. WIAS Preprint No. 1583 (2010). [Google Scholar]
  23. M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via Gamma convergence. WIAS Preprint No. 1636 (2011). [Google Scholar]
  24. O. Millet, A. Cimetiere and A. Hamdouni, An asymptotic elastic-plastic plate model for moderate displacements and strong strain hardening. Eur. J. Mech. A Solids 22 (2003) 369–384. [Google Scholar]
  25. D. Percivale, Perfectly plastic plates: a variational definition. J. Reine Angew. Math. 411 (1990) 39–50. [Google Scholar]
  26. A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear inelasticity. Math. Models Meth. Appl. Sci. (M3AS) 16 (2006) 177–209. [CrossRef] [MathSciNet] [Google Scholar]
  27. E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci. (M3AS) 24 (2014) 1265–1341. [CrossRef] [Google Scholar]
  28. T. Roubíček and U. Stefanelli, Finite thermoelastoplasticity and creep under small elastic strains. Math. Mech. Solids 24 (2019) 1161–1181. [Google Scholar]
  29. T. Roubíček and J. Valdman, Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math. Mech. of Solids 22 (2017) 1267–1287. [CrossRef] [Google Scholar]
  30. M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain: existence and regularity results. Z. Angew. Math. Mech. 90 (2010) 88–112. [Google Scholar]
  31. S. Tsutsumi and R. Fincato, Cyclic elasticity model for fatigue with softening behaviour below macroscopic yielding. Mater. Des. 165 (2019) 107503. [Google Scholar]
  32. A. Visintin, Vol. 28 of Models of phase transitions. Progress in Nonlinear Differential Equations and Applications. Birkhäuser, Boston (1996). [Google Scholar]
  33. S-Y. Wang, L. Zhan, Z-L. Wang, Z.-N. Yin and H. Xiao, A direct approach towards simulating cyclic and non-cyclic fatigue failure of metals. Acta Mech. 228 (2017) 4325–4339. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.