Cancer modelling
Open Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Cancer modelling
Article Number 63
Number of page(s) 26
DOI https://doi.org/10.1051/mmnp/2020004
Published online 03 December 2020
  1. M. Abercrombie, The Croonian lecture, 1978: The crawling movement of metazoan cells. Proc. Roy. Soc. Lond. B 207 (1980) 129–147. [CrossRef] [Google Scholar]
  2. R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114 (1994) 45–58. [CrossRef] [MathSciNet] [Google Scholar]
  3. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. [CrossRef] [Google Scholar]
  4. M. Bailly and J. Condeelis, Cell motility: Insights from the backstage. Nat. Cell Biol. 4 (2003) E292–E294. [Google Scholar]
  5. A. Barlukova, G. Henry, S. Honoré, F. Hubert and D. White, In silico modeling microtubule dynamic instability with new mathematical concept of GTP-hydrolysis and aging. ESAIM: M2AN (2017). [Google Scholar]
  6. R. Bergès, A. Tchoghandjian, S. Honoré, M.-A. Estève, D. Figarella-Branger, F. Bachmann, H.A. Lane and D. Braguer, The novel tubulin-binding checkpoint activator BAL101553 inhibits EB1-dependent migration and invasion and promotes differentiation of glioblastoma stem-like cells. Mol. Cancer Ther. 15 (2016) 2740–2749. [CrossRef] [PubMed] [Google Scholar]
  7. P. Brest, L. Le’Negrate, G. Turchi, T.L. Le’Negrate, G. Brest, P.F. Berto, C. Moreilhon, B. Mari, G. Ponzio and P. Hofman, Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury. Infect Immun. 72 (2004) 5733–5740. [Google Scholar]
  8. J. Cau and A. Hall, Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118 (2005) 2579–2587. [CrossRef] [PubMed] [Google Scholar]
  9. C. Chainais-Hillairet, S. Krell and A. Mouton, Study of discrete duality finite volume schemes for the Peaceman model. SIAM J. Sci. Comput. 35 (2013) A2928–A2952. [CrossRef] [Google Scholar]
  10. S. Clain, S. Diot and R. Loubère, A high-order finite volume method for hyperbolic systems: multi-dimensional Optimal Order Detection (MOOD). J. Comput. Phys. 230 (2011) 4028–4050. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Condeelis, R.H. Singer and J.E. Segall, the great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21 (2005) 695–718. [CrossRef] [PubMed] [Google Scholar]
  12. G.-H. Cottet, Multi-physics and particle methods, Computational Fluid and Solid Mechanics 2003, edited by K.J. Bathe. Elsevier Science Ltd, Oxford (2003) 1296–1298. [Google Scholar]
  13. G.-H. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16 (2006) 415–438. [CrossRef] [MathSciNet] [Google Scholar]
  14. G.H. Cottet, E. Maitre and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: M2AN 42 (2008) 471–492. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Y. Deguchi, M. Harada, R. Shinohara, M. Lazarus, Y. Cherasse, Y. Urade, D. Yamada, M. Sekiguchi, D. Watanabe, T. Furuyashiki and S. Narumiya, mDia and ROCK mediate actin-dependent presynaptic remodeling regulating synaptic efficacy and anxiety. Cell Reports 17 (2016) 2405–2417. [CrossRef] [PubMed] [Google Scholar]
  16. E. Denicolaï, R. Tesson, C. Ricard, F. Hubert and S. Honoré, Mathematical modeling of the effect of microtubule dynamicsinstability on glioblastoma cells migration (2019). [Google Scholar]
  17. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [Google Scholar]
  18. C. Etchegaray, B. Grec, B. Maury, N. Meunier and L. Navoret, An integro-differential equation for 1D cell migration, Integral Methods in Science and Engineering (IMSE) (Karlsruhe, Germany), Integral Methods in Science and Engineering – Theoretical and Computational Advances. Springer (2014) 195–207. [Google Scholar]
  19. S. Etienne-Manneville, Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29 (2013) 471–499. [CrossRef] [PubMed] [Google Scholar]
  20. E.E. Evers, G.C.M. Zondag, A Malliri, L.S Price, J.-P. ten Klooster, R.A. van der Kammen and J.G Collard, Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 36 (2000) 1269–1274. [CrossRef] [Google Scholar]
  21. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7. Elsevier (2000) 713–1018. [Google Scholar]
  22. O. Friedrich, Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144 (1998) 194–212. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Gallinato, M. Ohta, C. Poignard and T. Suzuki, Free boundary problem for cell protrusion formations: theoretical and numerical aspects. J. Math. Biol. 75 (2017) 263–307. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. F. Gibou, R. Fedkiw and S. Osher, A review of level-set methods and some recent applications. J. Comput. Phys. 353 (2018) 82–109. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 2 (1986) 347–377. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. J. Computat. Phys. 131 (1997) 3–47. [CrossRef] [Google Scholar]
  28. F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150 (1999) 97–127. [CrossRef] [MathSciNet] [Google Scholar]
  30. F. Hubert, M. Tournus, D. White and S. Honoré, A growth-fragmentation approach for modeling microtubule dynamic instability. Bull. Math. Biol. 81 (2019) 722–758. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202–228. [CrossRef] [MathSciNet] [Google Scholar]
  32. I. Kaverina and A. Straube, Regulation of cell migration by dynamic microtubules. Semin. Cell. Dev. Biol. (2011). [Google Scholar]
  33. S. Krell, Stabilized DDFV schemes for stokes problem with variable viscosity on general 2d meshes. Numer. Methods Part. Differ. Equ. 27 (2011) 1666–1706. [CrossRef] [Google Scholar]
  34. C.D. Lawson and A.J. Ridley, Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol. 217 (2018) 447–457. [CrossRef] [PubMed] [Google Scholar]
  35. R. Maccioni and N.W. Seeds, Stoichiometry of GTP hydrolysis and tubulin polymerization. Proc. Natl. Acad. Sci. Biochem. (1977). [Google Scholar]
  36. M.S. Mizuhara, L. Berlyand and I.S. Aronson, Minimal Model of Directed Cell Motility on Patterned Substrates. Preprint arXiv:1705.05990 (2017). [Google Scholar]
  37. S. Narumiya, M. Tanji and T. Ishizaki, Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metast. Rev. 28 (2009) 65–76. [CrossRef] [PubMed] [Google Scholar]
  38. A. Nehlig, A. Molina, S. Rodrigues-Ferreira, S. Honoré and C. Nahmias, Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell. Mol. Life Sci. 74 (2017) 2381–2393. [CrossRef] [PubMed] [Google Scholar]
  39. S. Osher and R.P. Fedkiw, Level set methods: An overview and some recent results. J. Comput. Phys. 169 (2001) 463–502. [CrossRef] [MathSciNet] [Google Scholar]
  40. J.S. Park, S.-H. Yoon and C. Kim, Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. J. Comput. Phys. 229 (2010) 788–812. [CrossRef] [MathSciNet] [Google Scholar]
  41. T.D. Pollard and G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112 (2003) 453–465. [CrossRef] [PubMed] [Google Scholar]
  42. E.E. Sander, J.P. ten Klooster, S. van Delft, R.A. van der Kammen and J.G. Collard, Rac downregulates rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell. Biol. 147 (1999) 1009–1022. [CrossRef] [PubMed] [Google Scholar]
  43. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Computat. Phys. 77 (1988) 439–471. [CrossRef] [Google Scholar]
  44. M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146–159. [Google Scholar]
  45. R. Tesson, Modélisation mathématique de l’impact de la dynamique des microtubules sur la migration cellulaire. Ph.D. thesis, Aix-Marseille Université, Marseille, France (2017). [Google Scholar]
  46. R. Tesson, High-order DDFV method for level-set equations arising in a cell migration model (2019). [Google Scholar]
  47. B. Vanderlei, J.J. Feng and L. Edelstein-Keshet, A computational model of cell polarization and motility coupling mechanics and biochemistry. Multis. Model. Simul. 9 (2011) 1420–1443. [CrossRef] [PubMed] [Google Scholar]
  48. A.B. Verkhovsky, T.M. Svitkina and G.G. Borisy, Self-polarization and directional motility of cytoplasm. Curr. Biol. 9 (1999) 11–S1. [CrossRef] [Google Scholar]
  49. T. Watanabe, J. Noritake and K. Kaibuchi, Regulation of microtubules in cell migration. Trends Cell Biol. 15 (2005). [Google Scholar]
  50. D. White, S. Honoré and F. Hubert, Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability. J. Theor. Biol. 429 (2017) 18–34. [CrossRef] [Google Scholar]
  51. T. Wittmann and C.M. Waterman-Storer, Cell motility: can rho GTPases and microtubules point the way? J. Cell Sci. 114 (2001) 3795–3803. [Google Scholar]
  52. M. Yamao, H. Naoki, K. Kunida, K. Aoki, M. Matsuda and S. Ishii, Distinct predictive performance of rac1 and Cdc42 in cell migration. Nat. Sci. Rep. (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.