Cancer modelling
Open Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Cancer modelling
Article Number 11
Number of page(s) 18
DOI https://doi.org/10.1051/mmnp/2019037
Published online 28 February 2020
  1. B. Al-Sakere, F. André, C. Bernat, E. Connault, P. Opolon, R.V. Davalos, B. Rubinsky and L.M. Mir, Tumor ablation with irreversible electroporation. PLOS ONE 2 (2007) 1–8. [Google Scholar]
  2. D. Amann, A. Blaszczyk, G. Of and O. Steinbach, Simulation of floating potentials in industrial applications by boundary element methods. J. Math. Ind. 4 (2014) 13. [Google Scholar]
  3. M. Belehradek, C. Domenge, S. Orlowski, J.J. Belehradek and L.M. Mir, Electrochemotherapy, a new antitumor treatment: first clinical phase I/II trial. Cancer 72 (1993) 3694–700. [CrossRef] [PubMed] [Google Scholar]
  4. M. Bower, L. Sherwood, Y. Li and R. Martin, Irreversible electroporation of the pancreas: definitive local therapy without systemic effects. J. Surg. Oncol. 104 (2011) 22–28. [Google Scholar]
  5. M. Breton, F. Buret, L. Krähenbühl, M. Leguèbe, L.M. Mir, R. Perrussel, C. Poignard, R. Scorretti and D. Voyer, Non-linear steady-state electrical current modeling for the electropermeabilization of biological tissue. IEEE Trans. Magn. 51 (2015) 1–4. [CrossRef] [PubMed] [Google Scholar]
  6. C.Y. Calvet, D. Famin, F.M. André and L.M. Mir, Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology 3 (2014) e28131. [CrossRef] [PubMed] [Google Scholar]
  7. S. Campelo, M. Valerio, H.U. Ahmed, Y. Hu, S.L. Arena, R.E. Neal, M. Emberton and C.B. Arena, An evaluation of irreversible electroporation thresholds in human prostate cancer and potential correlations to physiological measurements. APL Bioeng. 1 (2017) 016101. [CrossRef] [PubMed] [Google Scholar]
  8. D. Chung, K. Sung, F. Osuagwu, H. Wu, C. Lassman and D. Lu, Contrast enhancement patterns after irreversible electroporation: experimental study of ct perfusion correlated to histopathology in normal porcine liver. J. Vasc. Intervent. Radiol. 27 (2016) 104–111. [CrossRef] [Google Scholar]
  9. A. Collin, D. Chapelle and P. Moireau, A luenberger observer for reaction–diffusion models with front position data. J. Comput. Phys. 300 (2015) 288–307. [Google Scholar]
  10. D. Cukjati, D. Batiuskaite, F. André, D. Miklavčič and L.M. Mir, Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70 (2007) 501–507. [CrossRef] [PubMed] [Google Scholar]
  11. R. Davalos, S. Bhonsle and R. Neal, Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy. Prostate 75 (2015) 1114–1118. [CrossRef] [PubMed] [Google Scholar]
  12. R. Davalos, B. Rubinsky and L. Mir, Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61 (2003) 99–107. [CrossRef] [PubMed] [Google Scholar]
  13. R.V. Davalos, L.M. Mir and B. Rubinsky, Tissue Ablation with Irreversible Electroporation. Ann. Biomed. Eng. 33 (2005) 223–231. [CrossRef] [PubMed] [Google Scholar]
  14. B. Denis de Senneville, C. Zachiu, M. Ries and C. Moonen, Evolution: an edge-based variational method for non-rigid multi-modal image registration. Phys. Med. Biol. 61 (2016) 7377–7396. [CrossRef] [PubMed] [Google Scholar]
  15. J. Edd, L. Horowitz, R. Davalos, L. Mir and B. Rubinsky, In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53 (2006) 1409–1415. [Google Scholar]
  16. A.T. Esser, K.C. Smith, T.R. Gowrishankar and J.C. Weaver, Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue. Technol. Cancer Res. Treatment 6 (2007) 261–273. [CrossRef] [Google Scholar]
  17. R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999) 457–492. [Google Scholar]
  18. C. Gabriel, S. Gabriel and E. Corthout, The dielectric properties of biological tissues: I. literature survey. Phys. Med. Biol. 41 (1996) 2231. [CrossRef] [PubMed] [Google Scholar]
  19. S. Gabriel, R.W. Lau and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41 (1996) 2251. [CrossRef] [PubMed] [Google Scholar]
  20. O. Gallinato, B. Denis de Senneville, O. Seror and C. Poignard, Numerical workflow of irreversible electroporation for deep-seated tumor. Phys. Med. Bio. 64 (2019). [CrossRef] [Google Scholar]
  21. O. Gallinato, M. Ohta, C. Poignard and T. Suzuki, Free boundary problem for cell protrusion formations: theoretical and numerical aspects. J. Math. Biol. 75 (2017) 263–307. [CrossRef] [PubMed] [Google Scholar]
  22. O. Gallinato and C. Poignard, IRENA: a Finite Volume Method based software for the numerical assessment of clinical IRE. [Google Scholar]
  23. J. Gehl, T. Skovsgaard and L. Mir, Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim. Biophys. Acta 1569 (2002) 51–58. [CrossRef] [PubMed] [Google Scholar]
  24. D. Haemmerich, D.J. Schutt, A.S. Wright, J.G. Webster and D.M. Mahvi, Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiolog. Measur. 30 (2009) 459–466. [CrossRef] [Google Scholar]
  25. D. Haemmerich, S.T. Staelin, J.-Z. Tsai, S. Tungjitkusolmun, D.M. Mahvi and J.G. Webster, In vivo electrical conductivity of hepatic tumours. Physiolog. Measur. 24 (2003) 251. [CrossRef] [Google Scholar]
  26. A. Ivorra, B. Al-Sakere, B. Rubinsky and L.M. Mir, In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54 (2009) 5949–5963. [CrossRef] [PubMed] [Google Scholar]
  27. A. Ivorra, L.M. Mir and B. Rubinsky, Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany (2009) 59–62. [CrossRef] [Google Scholar]
  28. A. Ivorra, J. Villemejane and L.M. Mir, Electrical modeling of the influence of medium conductivity on electroporation. Phys. Chem. Chem. Phys. 12 (2010) 10055–10064. [PubMed] [Google Scholar]
  29. W. Krassowska and J.C. Neu, Response of a single cell to an external electric field. Biophys. J. 66 (1994) 1768–1776. [CrossRef] [PubMed] [Google Scholar]
  30. N. Labarbera, Uncertainty quantification in irreversible electroporation simulations. Bioengineering 4 (2017) 41. [CrossRef] [Google Scholar]
  31. J. Langus, M. Kranjc, B. Kos, T. Šuštar and D. Miklavčič, Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Sci. Rep. 6 (2016) 26409. [CrossRef] [PubMed] [Google Scholar]
  32. M. Leguèbe, A. Silve, L. Mir and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments. J. Theor. Biol. 360 (2014). [Google Scholar]
  33. P. Moireau, D. Chapelle and P.L. Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 197 (2008) 659–677. [Google Scholar]
  34. P. Moireau and D. Chapelle, Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380–405. [CrossRef] [EDP Sciences] [Google Scholar]
  35. R.E. Neal, P.A. Garcia, H. Kavnoudias, F. Rosenfeldt, C.A. Mclean, V. Earl, J. Bergman, R.V. Davalos and K.R. Thomson, In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans. Biomed. Eng. 62 (2015) 561–569. [Google Scholar]
  36. R.E. Neal, P.A. Garcia, J.L. Robertson and R.V. Davalos, Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59 (2012) 1076–1085. [Google Scholar]
  37. R.E. Neal, J.L. Millar, H. Kavnoudias, P. Royce, F. Rosenfeldt, A. Pham, R. Smith, R.V. Davalos and K.R. Thomson, In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation: characterized and simulated prostate IRE. Prostate 74 (2014) 458–468. [CrossRef] [PubMed] [Google Scholar]
  38. S.A. Padia, G.E. Johnson, R.S. Yeung, J.O. Park, D.S. Hippe and M.J. Kogut, Irreversible electroporation in patients with hepatocellular carcinoma: immediate versus delayed findings at MR imaging. Radiology 278 (2015) 285–294. [CrossRef] [PubMed] [Google Scholar]
  39. P. Philips, Y. Li, S. Li, C. St Hill and R. Martin, Efficacy of irreversible electroporation in human pancreatic adenocarcinoma: advanced murine model. Mol. Therapy Methods Clin. Dev. 2 (2015). [CrossRef] [Google Scholar]
  40. M. Pintar, J. Langus, I. Edhemović, E. Brecelj, M. Kranjc, G. Sersa, T. Šuštar, T. Rodič, D. Miklavčič, T. Kotnik and B. Kos, Time-dependent finite element analysis of in vivo electrochemotherapy treatment. Technol. Cancer Res. Treatment 17 (2018) 1533033818790510. [CrossRef] [Google Scholar]
  41. S. Prakash, M.P. Karnes, E.K. Sequin, J.D. West, C.L. Hitchcock, S.D. Nichols, M. Bloomston, S.R. Abdel-Misih, C.R. Schmidt, E.W. Martin, S.P. Povoski and V.V. Subramaniam, Ex vivo electrical impedance measurements on excised hepatic tissue from human patients with metastatic colorectal cancer. Physiol. Measur. 36 (2015) 315–328. [CrossRef] [Google Scholar]
  42. B. Rubinsky, G. Onik and P. Mikus, Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treatment 6 (2007) 37–48. [CrossRef] [Google Scholar]
  43. W. Rucklidge, Efficient Visual Recognition Using the Hausdorff Distance. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1996). [CrossRef] [Google Scholar]
  44. D. Sel, D. Cukjati, D. Batiuskaite, T. Slivnik, L.M. Mir and D. Miklavčič, Sequential finite element model of tissue electropermeabilization. Trans. Biomed. Eng. 52 (2005) 816–827. [CrossRef] [Google Scholar]
  45. O. Séror, C. Poignard, O. Gallinato, R. Belkacem-Ourabia and O. Sutter, Irreversible electroporation: disappearance of observable changes at imaging does not always imply complete reversibility of the underlying causal tissue changes. Radiology 282 (2017). [Google Scholar]
  46. G. Serša, T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, M. Sentjurc, D. Miklavcic, M. Kadivec, S. Kranjc, A. Secerov, et al., Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer 98 (2008) 388–398. [CrossRef] [PubMed] [Google Scholar]
  47. O. Sutter, J. Calvo, G. N’Kontchou, J.-C. Nault, R. Ourabia-Belkacem, P. Nahon, N. Ganne-Carrié, V. Bourcier, N. Zentar, F. Bouhafs, N. Sellier, A. Diallo and O. Seror, Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series. Radiology 284 (2017) 877–886. [CrossRef] [PubMed] [Google Scholar]
  48. O. Sutter, A. Fihri, R. Ourabia-Belkacem, N. Sellier, A. Diallo and O. Seror, Real-time 3d virtual target fluoroscopic display for challenging hepatocellular carcinoma ablations using cone beam CT. Technol. Cancer Res. Treat. 17 (2018). [Google Scholar]
  49. K. Thomson, H. Kavnoudias and R. Neal, Introduction to irreversible electroporation–principles and techniques. Tech. Vasc. Interv. Radiol. 18 (2015) 128–134. [Google Scholar]
  50. D. Voyer, A. Silve, L.M. Mir, R. Scorretti and C. Poignard, Dynamical modeling of tissue electroporation. Bioelectrochemistry 119 (2018) 98–110. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.