Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Mathematical Models and Methods in Epidemiology
Article Number 65
Number of page(s) 43
DOI https://doi.org/10.1051/mmnp/2020044
Published online 03 December 2020
  1. A. Abdelrazec and A.B. Gumel, Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics. J. Math. Biol. 74 2017 1351–1395. [CrossRef] [PubMed] [Google Scholar]
  2. F.B. Agusto, A.B. Gumel and P.E. Parham, Qualitative assessment of the role of temperature variations on malaria transmission dynamics. J. Biolog. Syst. 23 (2015) 1550030. [CrossRef] [Google Scholar]
  3. D. Alonso, M.J. Bouma and M. Pascual, Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc. Roy. Soc. Lond. B 278 (2011) 1661–1669. [Google Scholar]
  4. R. Anguelov, Y. Dumont and J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput. Math. Appl. 64 (2012) 374–389. [CrossRef] [Google Scholar]
  5. J.I. Blanford, S. Blanford, R.G. Crane, M.E. Mann, K.P. Paaijmans, K.V. Schreiber and M.B. Thomas, Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 3 (2013) 1300. [CrossRef] [PubMed] [Google Scholar]
  6. J.F. Briere, P. Pracros, A.Y. Le Roux and J.S. Pierre, A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28 (1999) 22–29. [CrossRef] [Google Scholar]
  7. T.M. Bury, C.T. Bauch and M. Anand, Charting pathways to climate change mitigation in a coupled socio-climate model. PLoS Comput. Biol. 15 (2019) e1007000. [CrossRef] [Google Scholar]
  8. C. Caminade, S. Kovats, J. Rocklov, A.M. Tompkins, A.P. Morse, F.J. Colón-González, H. Stenlund, P. Martens and S.J. Lloyd, Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. 111 (2014) 3286–3291. [CrossRef] [Google Scholar]
  9. C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 2 (2004) 361–404. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. N. Chitnis, J.M. Cushing and J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math. 67 (2006) 24–45. [CrossRef] [Google Scholar]
  11. U.A. Danbaba and S.M. Garba, Analysis of model for the transmission dynamics of Zika with sterile insect technique. In: Mathematical Methods and Models in Biosciences, edited by R. Anguelov, M. Lachowicz. Biomath Forum, Sofia, GNU General Public License, University British Columbia, Canada (2018) 81–99. https://doi.org/10.11145/texts.2018.01.083. [Google Scholar]
  12. U.A. Danbaba and S.M. Garba, Modeling the transmission dynamics of Zika with sterile insect technique. Math. Methods Appl. Sci. 41 (2018) 8871–8896. [CrossRef] [Google Scholar]
  13. B. Dembele, A. Friedman and A.A. Yakubu, Malaria model with periodic mosquito birth and death rates. J. Biol. Dyn. 3 (2009) 430–445. [CrossRef] [PubMed] [Google Scholar]
  14. Y. Dumont, F. Chiroleu and C. Domerg, On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math. Biosci. 213 (2008) 80–91. [CrossRef] [Google Scholar]
  15. Y. Dumont and F. Chiroleu, Vector control for the Chikungunya disease. Math. Biosci. Eng. 7 (2010) 313–345. [CrossRef] [PubMed] [Google Scholar]
  16. J. Dushoff, J.B. Plotkin, S.A. Levin and D.J. Earn, Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. 101 (2004) 16915–16916. [CrossRef] [Google Scholar]
  17. S.E. Eikenberry and A.B. Gumel, Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J. Math. Biol. (2018) 1–77. [Google Scholar]
  18. S.M. Garba, A.B. Gumel and M.A. Bakar, Backward bifurcations in dengue transmission dynamics. Math. Biosci. 215 (2008) 11–25. [CrossRef] [Google Scholar]
  19. S.M. Garba and A.B. Gumel, Effect of cross-immunity on the transmission dynamics of two strains of dengue. Int. J. Comput. Math. 87 (2010) 2361–2384. [CrossRef] [Google Scholar]
  20. S.M. Garba and M.A. Safi, Mathematical analysis of West Nile virus model with discrete delays. Acta Math. Sci. 33 (2013) 1439–1462. [CrossRef] [Google Scholar]
  21. D. Greenhalgh and I.A. Moneim, SIRS epidemic model and simulations using different types of seasonal contact rate. Syst. Anal. Model. Simul. 43 (2010) 573–600. [CrossRef] [Google Scholar]
  22. P.W. Gething, T.P. Van Boeckel, D.L. Smith, C.A. Guerra, A.P. Patil, R.W. Snow and S.I. Hay, Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites Vectors 4 (2011) 92. [CrossRef] [Google Scholar]
  23. J.A. Heesterbeek and M.G. Roberts, The type-reproduction number T in models for infectious disease control. Math. Biosci. 206 (2007) 3–10. [CrossRef] [Google Scholar]
  24. V. Laperriere, K. Brugger and F. Rubel, Simulation of the seasonal cycles of bird, equine and human West Nile virus cases. Prevent. Veter. Med. 98 (2011) 99–110. [CrossRef] [Google Scholar]
  25. Y. Lou and X.Q. Zhao, A climate-based malaria transmission model with structured vector population. SIAM J. Appl. Math. 70 (2010) 2023–2044. [CrossRef] [Google Scholar]
  26. I.A. Moneim and Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate. Math. Biosci. Eng. 2 (2005) 591–611. [CrossRef] [PubMed] [Google Scholar]
  27. E.A. Mordecai, K.P. Paaijmans, L.R. Johnson, C. Balzer, T. Ben-Horin, E. de Moor, A. McNally, S. Pawar, S.J. Ryan, T.C. Smith and K.D. Lafferty, Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16 (2013) 22–30. [CrossRef] [Google Scholar]
  28. C.C. Murdock, E.D. Sternberg and M.B. Thomas, Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 6 (2016) 27771. [CrossRef] [PubMed] [Google Scholar]
  29. G.A. Ngwa and W.S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32 (2000) 747–763. [CrossRef] [Google Scholar]
  30. A.M. Niger and A.B. Gumel, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics. Differ. Equ. Dyn. Syst. 16 (2008) 251–287. [CrossRef] [Google Scholar]
  31. K. Okuneye and A.B. Gumel, Analysis of a temperature-and rainfall-dependent model for malaria transmission dynamics. Math. Biosci. 287 (2017) 72–92. [CrossRef] [Google Scholar]
  32. K. Okuneye, S.E. Eikenberry and A.B. Gumel, Weather-driven malaria transmission model with gonotrophic and sporogonic cycles. J. Biol. Dyn. 13 (2019) 288–324. [CrossRef] [PubMed] [Google Scholar]
  33. S. Olaniyi, K.O. Okosun, O. Adesanya and E.A. Areo, Global stability and optimal control analysis of malaria dynamics in the presence of human travelers. 10 (2018) 166–186. [Google Scholar]
  34. P.E. Parham, J. Waldock, G.K. Christophides, D. Hemming, F. Agusto, K.J. Evans, N. Fefferman, H. Gaff, A. Gumel, S. LaDeau and S. Lenhart, Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philo. Trans. R. Soc. B 370 (2015) 20130551. [CrossRef] [Google Scholar]
  35. M.A. Penny, R. Verity, C.A. Bever, C. Sauboin, K. Galactionova, S. Flasche, M.T. White, E.A. Wenger, N. Van de Velde, P. Pemberton-Ross and J.T. Griffin, Public health impact and cost-effectiveness of the RT, S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. The Lancet 387 (2016) 367–375. [CrossRef] [Google Scholar]
  36. F. Rubel, K. Brugger, M. Hantel, S. Chvala-Mannsberger, T. Bakonyi, H. Weissenböck and N. Nowotny, Explaining Usutu virus dynamics in Austria: model development and calibration. Prev. Veter. Med. 85 (2008) 166–186. [CrossRef] [Google Scholar]
  37. J. Shaman, M. Spiegelman, M. Cane and M. Stieglitz, A hydrologically driven model of swamp water mosquito population dynamics. Ecol. Model. 194 (2006) 395–404. [CrossRef] [Google Scholar]
  38. R. Tuteja, Malaria-an overview. FEBS J. 274 (2007) 4670–4679. [CrossRef] [PubMed] [Google Scholar]
  39. P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. W. Wangand X.Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20 (2008) 699–717. [CrossRef] [Google Scholar]
  41. M.T. White, R. Verity, T.S. Churcher and A.C. Ghani, Vaccine approaches to malaria control and elimination: Insights from mathematical models. Vaccine 33 (2015) 7544–7550. [CrossRef] [PubMed] [Google Scholar]
  42. Malaria: World Health Organization fact-sheets. Available at http://www.who.int/news-room/fact-sheets/detail/malaria accessed on 1st August (2018). [Google Scholar]
  43. H.M. Yang, A mathematical model for malaria transmission relating global warming and local socioeconomic conditions. Rev. Saude Pub. 35 (2001) 224–231. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.