Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 55
Number of page(s) 25
DOI https://doi.org/10.1051/mmnp/2020023
Published online 19 November 2020
  1. A. Agrachev, U. Boscain and D. Barilari, Introduction to Riemannian and Sub-Riemannian geometry, https://www.imj-prg.fr/~davide.barilari/ABB-v2.pdf (2019). [CrossRef] [Google Scholar]
  2. F. Alouges, A. DeSimone, L. Giraldi and M. Zoppello, Can magnetic multilayers propel artificial micro-swimmers mimicking, sperm cells. Soft Robot. 2 (2015) 117–128. [Google Scholar]
  3. F. Alouges, A. DeSimone, L. Giraldi and M. Zoppello, Purcell magneto-elastic swimmer controlled by an external magnetic field. IFAC PapersOnLine 40 (2017) 4120–4125. [CrossRef] [Google Scholar]
  4. F. Bagagiolo, An infinite horizon optimal control problem for some switching systems. Discr. Contin. Dyn. Syst. Ser. B 1 (2001) 443–462. [Google Scholar]
  5. F. Bagagiolo, On the controllability of the semilinear heat equation with hysteresis. Physica B 407 (2012) 1401–1403. [CrossRef] [Google Scholar]
  6. F. Bagagiolo and R. Maggistro, Hybrid thermostatic approximations of junctions for some optimal control problems on networks, SIAM J. Control Optim. 57 (2019) 2415–2442. [Google Scholar]
  7. F. Bagagiolo and A. Visintin, Hysteresis in filtration through porous media. Z. Anal. Anwendungen 19 (2000) 977–997. [CrossRef] [Google Scholar]
  8. F. Bagagiolo, D. Bauso, R. Maggistro and M. Zoppello, Game theoretic decentralized feedback controls in Markov jump processes. J. Optim. Theory Appl. 173 (2017) 704–726. [Google Scholar]
  9. F. Bagagiolo, R. Maggistro and M. Zoppello, Swimming by switching. Meccanica 52 (2017) 3499–3511. [Google Scholar]
  10. A. Bressan, Impulsive control of Lagrangian systems and locomotion in fluids. Discr. Contin. Dyn. Syst. 20 (2008) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Brokate and P. Krejči, Weak differentiability of scalar hysteresis operators. Discr. Contin. Dyn. Syst. 35 (2015) 2405–2421. [Google Scholar]
  12. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer-Verlag, New York (1996). [CrossRef] [Google Scholar]
  13. F. Ceragioli, C. De Persis and P. Frasca, Discontinuities and hysteresis in quantized average consensus. Automatica 47 (2011) 1916–1928. [CrossRef] [Google Scholar]
  14. W.L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1939) 98–105. [Google Scholar]
  15. M. Cocetti, L. Zaccarian, F. Bagagiolo and E. Bertolazzi, Necessary and sufficient stability conditions for equilibria of linear SISO feedbacks with a play operator. IFAC PapersOnLine 49 (2016) 211–216. [CrossRef] [Google Scholar]
  16. Colombo G. Colombo, R. Henrion, N.D. Hoang and B.S. Mordukhovich, Optimal control of the sweeping process. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 19 (2012) 117–159. [Google Scholar]
  17. J.M. Coron, Control and Nonlinearity. AMS, Providence (2007). [Google Scholar]
  18. C. Gavioli and P. Krejčí, Correction to: Control and controllability of PDEs with hysteresis. To appear in: Appl. Math. Optim. https://doi.org/10.1007/s00245-020-09668-1 (2020). [PubMed] [Google Scholar]
  19. M. Gocke, A macroeconomic model with hysteresis in foreign trade. Metroeconomica 52 (2001) 449–473. [Google Scholar]
  20. J. Kopfova and V. Recupero, BV-norm continuity of sweeping processes driven by a set with constant shape. J. Differ. Equ. 261 (2016) 5875–5899. [Google Scholar]
  21. M. Krasnosel’skiǐ and A. Pokrovskiǐ, Systems with Hysteresis. Springer-Verlag, Berlin (1989). [CrossRef] [Google Scholar]
  22. P. Krejčí and P. Laurençot, Generalized variational inequalities. J. Convex Anal. 9 (2002) 159–183. [Google Scholar]
  23. J.P. Laumond, S. Sekhavat and F. Lamiraux, Guidelines in nonholonomic motion planning formobile robots, in Robot Motion Planning and Control, edited by J.-P. Laumond. Vol. 229 of Lecture Notes in Information and Control Sciences. Springer, Berlin (1998). [CrossRef] [Google Scholar]
  24. D. Liberzon, Switching in Systems and Control. Birkhäuser, Boston (2003). [CrossRef] [Google Scholar]
  25. H. Logemann, E.P. Ryan and I. Shvartsman, Integral control of infinite-dimensional systems in presence of hysteresis: an input-output approach. ESAIM: COCV 13 (2007) 458–483. [CrossRef] [EDP Sciences] [Google Scholar]
  26. I.D. Mayergoyz, Mathematical Models of Hysteresis. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  27. R. Montgomery, Nonholonomic motion planning and Gauge theory, in Nonholonomic Motion Planning, edited by Z. Li, J.F. Canny. Vol. 192 of The Springer International Series in Engineering and Computer Science (Robotics: Vision, Manipulation and Sensors). Springer, Boston (1993) 343–377. [Google Scholar]
  28. J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26 (1977) 347–374. [Google Scholar]
  29. V. Recupero, On a class of scalar variational inequalities with measure data. Appl. Anal. 88 (2009) 1739–1753. [Google Scholar]
  30. V. Recupero, BV solutions of rate independent variational inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2011) 269–315. [Google Scholar]
  31. S. Tarbouriech, I. Queinnec and C. Prieur, Stability analysis and stabilization of systems with input backlash. IEEE Trans. Automat. Contr. 59 (2014) 488–494. [Google Scholar]
  32. A. Visintin, Differential Models of Hysteresis. Springer-Verlag, Berlin (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.