Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Mathematical Models and Methods in Epidemiology
Article Number 26
Number of page(s) 25
DOI https://doi.org/10.1051/mmnp/2021018
Published online 28 April 2021
  1. G.N. Agrios, Plant Pathology. Academic Press, San Diego, USA, 4 edition (1997). [Google Scholar]
  2. P.A. Arneson, Coffee rust. The Plant Health Instructor (2000). Available at http://www.apsnet.org/edcenter/intropp/lessons/fungi/Basidiomycetes/Pages/CoffeeRust.aspx (2011). [Google Scholar]
  3. J. Arroyo-Esquivel, F. Sanchez and L.A. Barboza, Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds. Math. Biosci. 307 (2019) 13–24. [CrossRef] [Google Scholar]
  4. J. Avelino, L. Willocquet and S. Savary, Effects of crop management patterns on coffee rust epidemics. Plant Pathol. 53 (2004) 541–547. [CrossRef] [Google Scholar]
  5. J. Avelino, H. Zelaya, A. Merlo, A. Pineda, M. Ordóñez and S. Savary, The intensity of a coffee rust epidemic is dependent on production situations. Ecol. Model. 197 (2006) 431–447. [CrossRef] [Google Scholar]
  6. D.P. Bebber, Á.D. Castillo and S.J. Gurr, Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philos. Trans. Royal Soc. B: Biol. Sci. 371 (2016) 20150458. [CrossRef] [Google Scholar]
  7. J.A.M. Bedimo, B.P. Dufour, C. Cilas and J. Avelino, Effets des arbres d’ombrage sur les bioagresseurs de Coffea arabica. Cahiers Agric. 21 (2012) 89–97. [CrossRef] [Google Scholar]
  8. K.R. Bock, Dispersal of uredospores of Hemileia vastatrix under field conditions. Trans. Br. Mycolog. Soc. 45 (1962) 63–74. [CrossRef] [Google Scholar]
  9. J.-B. Burie, A. Calonnec and M. Langlais, Modeling of the invasion of a fungal disease over a vineyard. Vol. 2 of Mathematical Modeling of Biological Systems. Springer (2008) 11–21. [Google Scholar]
  10. A. Capucho, L. Zambolim, U. Lopes and N. Milagres, Chemical control of coffee leaf rust in Coffea canephora cv. conilon. Aust. Plant Pathol. 42 (2013) 667–673. [CrossRef] [Google Scholar]
  11. G. Carrion and V. Rico-Gray, Mycoparasites on the coffee rust in Mexico. Fungal Divers. 11 (2002) 49–60. [Google Scholar]
  12. C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1 (2004) 361. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. A. Charrier and J. Berthaud, Botanical classification of coffee. In Coffee. Springer (1985) 13–47. [CrossRef] [Google Scholar]
  14. L. Galbusera, M.P.E. Marciandi, P. Bolzern and G. Ferrari-Trecate, Control schemes based on the wave equation for consensus in multi-agent systems with double-integrator dynamics. In 2007 46th IEEE Conference on Decision and Control. IEEE (2007) 1498–1503. [CrossRef] [Google Scholar]
  15. G. Grée Epidemiology of coffee leaf rust in the Eastern Highlands. Coffee Res. Inst. Newsletter 2 (1993) 16–20. [Google Scholar]
  16. F. Haddad, L.A. Maffia, E.S.G. Mizubuti and H. Teixeira, Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil. Biol. Control 49 (2009) 114–119. [CrossRef] [Google Scholar]
  17. F. Haddad, R.M. Saraiva, E.S.G. Mizubuti, R.S. Romeiro and L.A. Maffia, Antifungal compounds as a mechanism to control Hemileia vastatrix by antagonistic bacteria. Tropical Plant Pathol. 38 (2013) 398–405. [CrossRef] [Google Scholar]
  18. Institut de Recherches du Café, du Cacao et autres plantes stimulantes (IRCC), Montpellier, France. Manuel du planteur de café Laotien (1991). [Google Scholar]
  19. International Coffee Organization, Coffee production by exporting countries. Trade statistics tables: http://www.ico.org/prices/po-production.pdf (accessed 23/2/2020). [Google Scholar]
  20. H. Kielhöfer, Stability and semilinear evolution equations in Hilbert space. Arch. Ratl. Mech. Anal. 57 (1974) 150–165. [CrossRef] [Google Scholar]
  21. J.P. LaSalle, Vol. 25 of The stability of dynamical systems. Siam (1976). [Google Scholar]
  22. L. Mailleret and F. Grognard, Global stability and optimisation of a general impulsive biological control model. Math. Biosci. 221 (2009) 91–100. [CrossRef] [Google Scholar]
  23. R.E. Mickens, Nonstandard finite difference schemes for reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 15 (1999) 201–214. [CrossRef] [Google Scholar]
  24. R.A. Muller, D. Berry, J. Avelino and D. Bieysse, Chap. 4 of Coffee Diseases. John Wiley & Sons, Ltd (2008) 491–545. [Google Scholar]
  25. F.J. Nutman, F.M. Roberts and R.T. Clarke, Studies on the biology of hemileia vastatrix berk. & br. Trans. Br. Mycolog. Soc. 46 (1963) 27–44. [CrossRef] [Google Scholar]
  26. C.-V. Pao, Nonlinear parabolic and elliptic equations. Springer Science & Business Media (2012). [Google Scholar]
  27. J. Papaïx, K. Adamczyk-Chauvat, A. Bouvier, K. Kiêu, S. Touzeau, C. Lannou and H. Monod, Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework. Infect. Genetics Evol. 27 (2014) 509–520. [CrossRef] [Google Scholar]
  28. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44. Springer Science & Business Media (2012). [Google Scholar]
  29. R.W. Rayner, Germination and penetration studies on coffee rust (Hemileia vastatrix B. & Br.). Ann. Appl. Biol. 49 (1961) 497–505. [CrossRef] [Google Scholar]
  30. C.J. Rodrigues Jr Coffee rusts: history, taxonomy, morphology, distribution and host resistance. Fitopatolog. Bras. 15 (1990) 5–9. [Google Scholar]
  31. N. Sapoukhina, Y. Tyutyunov, I. Sache and R. Arditi, Spatially mixed crops to control the stratified dispersal of airborne fungal diseases. Ecol. Model. 221 (2010) 2793–2800. [CrossRef] [Google Scholar]
  32. H.F. Shiomi, H.S.A. Silva, I.S.d. Melo, F.V. Nunes and W. Bettiol, Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Sci. Agricola 63 (2006) 32–39. [CrossRef] [Google Scholar]
  33. H.S.A. Silva, J.P. Tozzi, C.R.F. Terrasan and W. Bettiol, Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biol. Control 63 (2012) 62–67. [CrossRef] [Google Scholar]
  34. J.-B. Suchel, Quelques remarques à propos de la répartition des pluies au Cameroun durant la période sèche 1969–1973. Hommes et Terres du Nord 3 (1983) 24–28. [CrossRef] [Google Scholar]
  35. C. Tadmon and S. Foko, Modeling and mathematical analysis of an initial boundary value problem for hepatitis b virus infection. J. Math. Anal. Appl. 474 (2019) 309–350. [CrossRef] [Google Scholar]
  36. V.M. Toledo and P. Moguel, Coffee and sustainability: the multiple values of traditional shaded coffee. J. Sustain. Agric. 36 (2012) 353–377. [CrossRef] [Google Scholar]
  37. J. Vandermeer, Z. Hajian-Forooshani and I. Perfecto, The dynamics of the coffee rust disease: an epidemiological approach using network theory. Eur. J. Plant Pathol. 150 (2018) 1001–1010. [CrossRef] [Google Scholar]
  38. J. Vandermeer, D. Jackson and I. Perfecto, Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology. BioScience 64 (2014) 210–218. [CrossRef] [Google Scholar]
  39. J. Vandermeer, I. Perfecto and H. Liere, Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol. 58 (2009) 636–641. [CrossRef] [Google Scholar]
  40. J. Vandermeer and P. Rohani, The interaction of regional and local in the dynamics of the coffee rust disease. Preprint arXiv:1407.8247 (2014). [Google Scholar]
  41. J.M. Waller, Coffee rust–epidemiology and control. Crop Protect. 1 (1982) 385–404. [CrossRef] [Google Scholar]
  42. J. Wang, J. Yang and T. Kuniya, Dynamics of a pde viral infection model incorporating cell-to-cell transmission. J. Math. Anal. Appl. 444 (2016) 1542–1564. [CrossRef] [Google Scholar]
  43. A. Yagi, Abstract parabolic evolution equations and their applications. Springer Science & Business Media (2009). [Google Scholar]
  44. L. Zambolim and M.C. Chaves, Efeito de baixas temperaturas e do binomio temperatura-umidade relativa sobre a viabilidade dos uredosporos de Hemileia vastatrix Berk. et Br. e Uromyces phaseoli typica arth. Experientiae (Brasil) 17 (1974) 151–184. [Google Scholar]
  45. W. Zhu, Global exponential stability of impulsive reaction–diffusion equation with variable delays. Appl. Math. Comput. 205 (2008) 362–369. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.