Math. Model. Nat. Phenom.
Volume 16, 2021
Modelling and Simulations of Fluid Flows
Article Number 2
Number of page(s) 23
Published online 08 February 2021
  1. E.A. Baskharone and A. Ghali, Theoretical vs experimental rotordynamic coefficients of incompressible flow labyrinth seals. J. Propul. Power 10 (1994) 721–728. [Google Scholar]
  2. D.W. Childs and J.M. Vance, Annular gas seals and rotordynamics of compressors and turbines, in Proceedings of the 26th Turbomachinery Symposium (1997) 201–220. [Google Scholar]
  3. Y. Dai, Large Eddy Simulation of labyrinth seals and rib shapes for internal cooling passages. PhD. thesis, Department of Engineering, Cambridge University (2017). [Google Scholar]
  4. J.A. Domaradzki and D.D. Holm, Navier-Stokes-alpha model: LES equations with nonlinear dispersion. APS Division of Fluid Dynamics Meeting Abstracts (2001). [Google Scholar]
  5. J. Fasheh, Review and summary of labyrinth seal theory and design, TMR Report (1972) 2115–3351. [Google Scholar]
  6. A.J. Gamal and J.M. Vance, Labyrinth seal leakage tests: tooth profile, tooth thickness, and eccentricity effects. J. Eng. Gas Turbines Power 130 (2008) 012510. [Google Scholar]
  7. B.J. Geurts and D.D. Holm, Leray and lans-α modelling of turbulent mixing. J. Turbulence 7 (2006) 10. [Google Scholar]
  8. J.T. Han, A fluid mechanics model to estimate the leakage of incompressible fluids through labyrinth seals, Oak Ridge National Laboratory report TM-6373 (1978). [Google Scholar]
  9. J. Holland, Adaptation in natural and artificial systems, univ. of mich. press, Ann Arbor (1975). [Google Scholar]
  10. R. Jin, W. Chen and T.W. Simpson, Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23 (2001) 1–13. [Google Scholar]
  11. R. Kerr and P.G. Tucker, Mixed nonlinear LES for DES suitable flows. 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005) 10 pages. [Google Scholar]
  12. S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680. [Google Scholar]
  13. K.-S. Lee, K.-Y. Kim and A. Samad, Design optimization of low-speed axial flow fan blade with three-dimensional RANS analysis. J. Mech. Sci. Technol. 22 (2008) 1864–1869. [Google Scholar]
  14. Y. Liu, P.G. Tucker and R. Kerr, Linear and nonlinear model large-eddy simulations of a plane jet. Comput. Fluids 37 (2008) 439–449. [Google Scholar]
  15. Z. Lu, Y. Xie and D. Qiu, The finite–difference simulation of flow field in labyrinth seals. Chin. J. Appl. Mech. (1992). [Google Scholar]
  16. C. Meneveau and J. Katz, Scale-Invariance and turbulence models for Large-Eddy Simulation. Annu. Rev. Fluid Mech. 32 (2000) 1–32. [Google Scholar]
  17. G. Morrison and D. Chi, Incompressible flow in stepped labyrinth seals, Joint Applied Mechanics, Fluids Engineering, and Bioengineering Conference, Albuquerque, June 24–26 (1985). [Google Scholar]
  18. M. Michaud, A. Vakili, A. Meganathan, R. Zielke, L. Shuster and J. Terrell, An experimental study of labyrinth seal flow, in International Joint Power Generation Conference collocated with TurboExpo 2003. American Society of Mechanical Engineers (2003) 497–504. [Google Scholar]
  19. S. Obayashi and S. Takanashi, Genetic optimization of target pressure distributions for inverse design methods. AIAA J. 34 (1996) 881–886. [Google Scholar]
  20. S. Pierret, Multi-objective and multi-disciplinary optimization of three-dimensional turbomachinery blades. Proceedings of the 6th worldcongresses of structural and multidisciplinary optimization (2005). [Google Scholar]
  21. A. Preece, An investigation into methods to aid the simulation of turbulent separation control. PhD. thesis, Fluid Dynamics Research Centre, University of Warwick (2008). [Google Scholar]
  22. D. Rhode, S. Ko and G. Morrison, Leakage optimization of labyrinth seals using a Navier-Stokes code. Tribol. Trans. 37 (1994) 105–110. [Google Scholar]
  23. D.L. Rhode and B.F. Allen, Visualization and measurements of rub-groove leakage effects on straight-through labyrinth seals, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers (1998) V004T09A085–V004T09A085. [Google Scholar]
  24. D.L. Rhode and R.G. Adams, Relative axial displacement leakage effects on straight-through labyrinth seals with rub grooves, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, v11-14th July, Fort Lauderdale, Florida, USA, AIAA-2004-3716 (2004). [Google Scholar]
  25. D. Rhode and R. Hibbs, Tooth thickness effect on the performance of gas labyrinth seals. J Tribol. 114 (1992) 790–795. [Google Scholar]
  26. D. Rhode and R. Hibbs, Clearance effects on corresponding annular and labyrinth seal flow leakage characteristics. J. Tribol. 115 (1993) 699–704. [Google Scholar]
  27. V. Schramm, J. Denecke, S. Kim and S. Wittig, Shape optimization of a labyrinth seal applying the simulated annealing method. Int. J. Rotating Mach. 10 (2004) 365–371. [Google Scholar]
  28. H. Stoff, Incompressible flow in a labyrinth seal. J. Fluid Mech. 100 (1980) 817–829. [Google Scholar]
  29. H. Theil, A rank-invariant method of linear and polynomial regression analysis, in Henri Theil’s Contributions to Economics and Econometrics. Springer (1992) 345–381. [Google Scholar]
  30. Y.-H. Tseng and J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192 (2003) 593–623. [Google Scholar]
  31. P.G. Tucker, Computation of unsteady internal flows: fundamental methods with case studies. Springer Science & Business Media (2001). [Google Scholar]
  32. J. Tyacke, R. Jefferson-Loveday and P.G. Tucker, Application of LES to labyrinth seals. Proceedings of the AIAA CFD Conference, No. AIAA-2011-3861 (2011). [Google Scholar]
  33. J. Tyacke, R. Jefferson-Loveday and P. Tucker, On the application of LES to seal geometries. Flow Turbulence Combust. 91 (2013) 827–848. [Google Scholar]
  34. J. Tyacke, Low Reynolds number heat transfer prediction employing Large Eddy Simulation for electronics geometries. PhD. thesis, Civil and Computational Engineering Centre, Swansea University (2009). [Google Scholar]
  35. J.C. Tyacke and P.G. Tucker, Large eddy simulation of turbine internal cooling ducts. Comput. Fluids 114 (2015) 130–140. [Google Scholar]
  36. J.C. Tyacke and P.G. Tucker, LES of heat transfer in electronics. Appl. Math. Model. 36 (2012) 3112–3133. [Google Scholar]
  37. A. Vakili, A. Meganathan, M. Michaud and S. Radhakrishnan, An experimental and numerical study of labyrinth seal flow, in ASME Turbo Expo 2005: Power for Land, Sea, and Air. American Society of Mechanical Engineers (2005) 1121–1128. [Google Scholar]
  38. R. Watson and P. Tucker, Perfectly parallel optimization for cutback trailing Edges. AIAA J. 54 (2016) 1–10. [Google Scholar]
  39. R. Watson, Large eddy simulation of cutback trailing edges for film cooling turbine blades. PhD. thesis, Department of Engineering, Cambridge University (2013). [Google Scholar]
  40. R. Watson, P. Tucker, Z.-N. Wang and X. Yuan, Towards robust unstructured turbomachinery large eddy simulation. Comput. Fluids 118 (2015) 245–254. [Google Scholar]
  41. W. Waschka, S. Wittig and S. Kim, Influence of high rotational speeds on the heat transfer and discharge coefficients in labyrinth seals. J. Turbomach. 114 (1992) 462–468. [Google Scholar]
  42. S. Wittig, L. Dorr and S. Kim, Scaling effects on leakage losses in labyrinth Seals. J. Eng. Power 105 (1983) 305–309. [Google Scholar]
  43. A. Yoshizawa, Bridging between eddy-viscosity-type and second-order turbulence models through a two-scale turbulence theory. Phys. Rev. E 48 (1993) 273. [Google Scholar]
  44. U. Yucel and J.Y. Kazakia, Analytical prediction techniques for axisymmetric flow in gas labyrinth seals. J. Eng. Gas Turbines Power 123 (2001) 255–257. [Google Scholar]
  45. W. Zabriskie and B. Sternlicht, Labyrinth seal leakage analysis. J. Basic Eng. 81 (1959) 332–340. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.