Open Access
Math. Model. Nat. Phenom.
Volume 16, 2021
Article Number 58
Number of page(s) 17
Published online 09 November 2021
  1. E. Abatih, L. Ron, N. Speybroeck, B. Williams and D. Berkvens, Mathematical analysis of the tranmission dynamics of brucellosis among bison. Math. Method. Appl. Sci. 38 (2015) 3818–3832. [CrossRef] [Google Scholar]
  2. B.E. Aïnseba, C. Benosman and P. Megal, A model for ovine brucellosis incorporating direct and indirect transmission. J. Biol. Dyn. 4 (2010) 2–11. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28 (1990) 257–270. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. S. Busenberg, K. Cooke and H. Thieme, Demographic change and persisitence of HIV/AIDS in a heterogengeous population. SIAM J. Appl. Math. 51 (1991) 1030–1052. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.S. Cantrell, C. Cosner and W.F. Faganantrell, Brucellosis, botflies, and brainworms: the impact of edge habitats on pathogen transmission and species extinction. J. Math. Biol. 42 (2001) 95–119. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. A. Dobson and M. Meagher, The population dynamics of Brucellosis in the Yellowstone national park. Ecology 77 (1996) 1026–1036. [CrossRef] [Google Scholar]
  7. C. Geremia, P.J. White, J.A. Hoeting, R.L. Wallen, F.G.R. Watson, D. Blanton and N.T. Hobbs, Integrating population-and individual-level information in a movement model of Yellowstone bison. Ecol. Appl. 24 (2014) 346–362. [CrossRef] [PubMed] [Google Scholar]
  8. J. González-Gunmán and R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations. J. Math. Biol. 33 (1994) 211–223. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. J.K. Hale and H. Kocak, Dynamics and Bifurcations. Texts in Applied Mathematics, Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  10. Z.L. He, J.G. Li, L.F. Nie and Z. Zhao, Nonlinear state-dependent feedback control strategy in the SIR epidemic model with resource limitation. Adv. Differ. Equ.-Ny 2017 (2017) Article ID 209. [Google Scholar]
  11. Q. Hou, X. Sun, J. Zhang, Y. Liu, Y. Wang and Z. Jin, Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China. Math. Biosci. 242 (2013) 51–58. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model with varying total population size. Appl. Math. Comput. 265 (2015) 785–798. [MathSciNet] [Google Scholar]
  13. V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations. World Scientific, Singapore (1989). [CrossRef] [Google Scholar]
  14. H. Li, R. Peng and F.B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262 (2017) 885–913. [CrossRef] [Google Scholar]
  15. M.Y. Li, J.R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160 (1999) 191–213. [Google Scholar]
  16. M.T. Li, G.Q. Sun, Y.F. Wu, J. Zhang and Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm. Appl. Math. Comput. 237 (2014) 582–594. [MathSciNet] [Google Scholar]
  17. P.O. Lolika, S. Mushayabasa, C.P. Bhunu, C. Modnak and J. Wang, Modeling and analyzing the effects of seasonality on brucellosis infection. Chaos Soliton. Fract. 104 (2017) 338–349. [CrossRef] [Google Scholar]
  18. G. Lu and Z. Lu, Global asymptotic stability for the SEIRS models with varying total population size. Math. Biosci. 296 (2018) 17–25. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Nannyonga, G.G. Mwanga and L.S. Luboobi, An optimal control problem for ovine brucellosis with culling. J. Biol. Dyn. 9 (2015) 198–214. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. J. Nie, G.Q. Sun, X.D. Sun, J. Zhang, N. Wang, Y.M. Wang, C.J. Shen, B.X. Huang and Z. Jin, Modeling the transmission dynamics of dairy cattle brucellosis in Jilin province, China. J. Biol. Syst. 22 (2014) 533–554. [CrossRef] [Google Scholar]
  21. L.F. Nie, Z.D. Teng and B.Z. Guo, A state dependent pulse control strategy for a SIRS epidemic system. B. Math. Biol. 75 (2013) 1697–1715. [CrossRef] [PubMed] [Google Scholar]
  22. L.F. Nie, Z.D. Teng and I.H. Jung, Complex dynamic behavior in a viral model with state feedback control strategies. Nonlinear Dyn. 77 (2014) 1223–1236. [CrossRef] [PubMed] [Google Scholar]
  23. W. Qin, S. Tang and R.A. Cheke, Nonlinear pulse vaccination in an SIR epidemic model with resource limitation. Abstr. Appl. Anal. 2013 (2013) 4339–4344. [Google Scholar]
  24. L.E. Samartino, Brucellosis in Argentina. Vet. Microbiol. 90 (2002) 71–80. [CrossRef] [Google Scholar]
  25. M.M.H. Sewell and D.W. Brocklesby, Handbook of Animal Diseases in the Tropics, 4th edn. Balliere Tindall, Toronto (1990). [Google Scholar]
  26. P.S. Simeonov and D.D. Bainov, Orbital stability of periodic solutions of autonomous systems with impulse effect. Int. J. Systems Sci. 19 (1988) 2561–2585. [CrossRef] [Google Scholar]
  27. S. Sun, C. Guo and C. Qin, Dynamic behaviors of a modified predator-prey model with state-dependent impulsive effects. Adv. Differ. Equ.-Ny 2016 (2016) Article ID 50. [Google Scholar]
  28. S. Tang, Y. Xiao and D. Clancy, New modelling approach concerning integrated disease control and cost-effectivity. Nonlinear Anal.-Theory Methods Appl. 63 (2005) 439–471. [Google Scholar]
  29. J. Touboul and R. Brette, Spiking dynamics of bidimensional integrate-and-fire neurons. SIAM J. Appl. Dyn. Syst. 8 (2009) 1462–1506. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.J. Treanor, J.S. Johnson, R.L. Wallen, S. Cilles, P.H. Crowley, J.J. Cox, D.S. Maehr, P.J. White and G.E. Plumb, Vaccination strategiesfor managing brucellosis in Yellowstone bison. Vaccine 28 (2010) F64–F72. [CrossRef] [PubMed] [Google Scholar]
  31. Q. Xiao, B. Dai, B. Xu and L. Bao, Homoclinic bifurcation for a general state-dependent Kolmogorov type predator-prey model with harvesting. Nonlinear Anal.-Real World Appl. 26 (2015) 263–273. [CrossRef] [MathSciNet] [Google Scholar]
  32. F. Xie and R.D. Horan, Disease and behavioral dynamics for brucellosis control in EIk and Cattle in the greater Yellowstone area. J. Agric. Resour. Econ. 34 (2009) 11–33. [Google Scholar]
  33. C. Yang, P.O. Lolika, S. Mushayabasa and J. Wang, Modeling the spatiotemporal variations in brucellosis transmission. Nonlinear Anal.-Real World Appl. 38 (2017) 49–67. [CrossRef] [MathSciNet] [Google Scholar]
  34. W. Zhao, J. Li and X. Meng, Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015 (2015) Article ID 848623. [Google Scholar]
  35. T. Zhang, J. Zhang, X. Meng and T. Zhang, Geometric analysis of a pest management model with Holling’s type III functional response and nonlinear state feedback control. Nonlinear Dyn. 84 (2016) 1529–1539. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.