Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 22
Number of page(s) 20
DOI https://doi.org/10.1051/mmnp/2022026
Published online 01 August 2022
  1. L. Almeida, J. Estrada and N. Vauchelet, The sterile insect technique used as a barrier control against reinfestation. Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization, edited by H. Roland et al., Berlin: De Gruyter (2022) 91–111. [Google Scholar]
  2. L. Almeida, A. Leculier and N. Vauchelet, Analysis of the “Rolling carpet” strategy to eradicate an invasive species. hal-03261142. [Google Scholar]
  3. D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in vol. 446 of Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, edited by J.A. Goldstein. Springer, Berlin, Heidelberg (1975). [Google Scholar]
  4. R. Bellini, M. Calvitti, A. Medici et al., Use of the sterile insect technique against aedes albopictus in Italy: first results of a pilot trial. In Area-Wide Control of Insect Pests, edited by M.J.B. Vreysen, A.S. Robinson and J. Hendrichs. Springer, Dordrecht (2007). [Google Scholar]
  5. H. Berestycki, N. Rodriguez and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity. Multiscale Model. Simul. 11 (2013) 1097–1126. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.-A. Bliman, D. Cardona-Salgado, Y. Dumont and O. Vasilieva, Implementation of control strategies for sterile insect techniques. Math. Biosci. 314 (2019) 43–60. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Chapuisat and R. Joly, Asymptotic profiles for a traveling front solution of a biological equation. Math. Mod. Methods Appl. Sci. 21 (2011) 2155–2177. [CrossRef] [Google Scholar]
  8. E. Chambers, L.K.M. Hapairai, B.A. Peel, H. Bossin and S. Dobson, Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions. PLoS Negl. Trop. Dis. 5 (2011) e1271. [CrossRef] [Google Scholar]
  9. V.A. Dyck, J. Hendrichs and A.S. Robinson, Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management. Springer (2005). [Google Scholar]
  10. Y. Dumont and J.M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J. Math. Biol. 65 (2012) 809–854. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. S. Eberle, Front blocking versus propagation in the presence of a drift term in the direction of propagation. Nonlinear Anal. 197 (2020). [Google Scholar]
  12. E.F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48 (1955) 459–462. [CrossRef] [Google Scholar]
  13. M.A. Lewis and P. van den Driessche, Waves of extinction from sterile insect release. Math Biosci. 116 (1993) 221–247. [CrossRef] [Google Scholar]
  14. T.J. Lewis, The Effects of Nonexcitable Regions on Signal Propagation in Excitable Media: Propagation and Reflection. Ph. D. Thesis, University of Utah (1998). [Google Scholar]
  15. T.J. Lewis and J.P. Keener, Wave-block in excitable media due to regions of depressed excitability. SIAM J. Appl. Math. 61 (2000) 293–316. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. (2015) doi: https://doi.org/10.1080/17513758.2014.977971. [Google Scholar]
  17. G. Nadin, M. Strugarek and N. Vauchelet, Hindrances to bistable front propagation: application to Wolbachia invasion. J. Math. Biol. 76 (2018) 1489–1533. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. C.F. Oliva, M. Jacquet, J. Gilles et al., The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on reunion island: mating vigour of sterilized males. J PLOS ONE 7 (2012). doi: 10.1371/journal.pone.0049414. [Google Scholar]
  19. J. Pauwelussen, One way traffic of pulses in a neuron. J. Math. Biol. 15 (1982) 151–171. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. C. Pouchol, E. Trélat and E. Zuazua, Phase portrait control for 1D monostable and bistable reaction-diffusion equations. Nonlinearity (2018). [Google Scholar]
  21. L. Roques, T. Boivin, J. Papaïx, S. Soubeyrand and O. Bonnefon, Dynamics of Aedes Albopictus invasion insights from a spatio temporal model (submitted). [Google Scholar]
  22. D. Ruiz-Balet and E. Zuazua, Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations. J. Math. Pures Appl. 143 (2020) 345–375. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Seirin Lee, R.E. Baker, E.A. Gaffney and S.M. White, Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques. Theor. Ecol. 6 (2013) 427–442. [CrossRef] [Google Scholar]
  24. M. Strugarek, H. Bossin and Y. Dumont, On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl. Math. Model. 68 (2019) 443–470. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Zheng, D. Zhang, Y. Li et al., Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.